Strain engineering of ZnO thermal conductivity

被引:20
作者
Antonio Seijas-Bellido, Juan [1 ]
Rurali, Riccardo [1 ]
Iniguez, Jorge [2 ,3 ]
Colombo, Luciano [4 ]
Melis, Claudio [4 ]
机构
[1] CSIC, ICMAB, Inst Ciencia Mat Barcelona, Campus Bellaterra, Barcelona 08193, Spain
[2] Luxembourg Inst Sci & Technol, Mat Res & Technol Dept, Ave Hauts Fourneaux 5, L-4362 Esch Sur Alzette, Luxembourg
[3] Univ Luxembourg, Phys & Mat Sci Res Unit, 41 Rue Brill, L-4422 Belvaux, Luxembourg
[4] Univ Cagliari, Dept Phys, I-09042 Monserrato, Ca, Italy
关键词
DOPED ZNO; THERMOELECTRIC PROPERTIES; OPTICAL-PROPERTIES; ZINC-OXIDE; TRANSPORT; DYNAMICS; GERMANIUM; PRESSURE; SILICON;
D O I
10.1103/PhysRevMaterials.3.065401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using a combination of equilibrium classical molecular dynamics (within the Green-Kubo formalism) and the Boltzmann transport equation, we study the effect of strain on the ZnO thermal conductivity focusing in particular on the case of hydrostatic and uniaxial strain. The results show that in the case of hydrostatic strain up to +/- 4%, we can obtain thermal conductivity variations of more than 100%, while for uniaxial strains the calculated thermal conductivity variations are comparatively less pronounced. In particular, by imposing uniaxial compressive strains up to -4%, we estimate a corresponding thermal conductivity variation close to zero. The mode analysis based on the solution of the Boltzmann transport equation shows that for hydrostatic strains, the thermal conductivity variations are mainly due to a corresponding modification of the phonon relaxations times. Finally, we provide evidence that for uniaxial compressive strains the contribution of the phonon relaxations time is balanced by the increase of the group velocities leading to a thermal conductivity almost unaffected by strain.
引用
收藏
页数:8
相关论文
共 57 条
  • [51] Xu S, 2010, NAT NANOTECHNOL, V5, P366, DOI [10.1038/NNANO.2010.46, 10.1038/nnano.2010.46]
  • [52] Anomalous pressure effect on the thermal conductivity of ZnO, GaN, and AlN from first-principles calculations
    Yuan, Kunpeng
    Zhang, Xiaoliang
    Tang, Dawei
    Hu, Ming
    [J]. PHYSICAL REVIEW B, 2018, 98 (14)
  • [53] THERMAL-CONDUCTIVITY OF NACL, MGO, COESITE AND STISHOVITE UP TO 40 KBAR
    YUKUTAKE, H
    SHIMADA, M
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1978, 17 (03) : 193 - 200
  • [54] Strain effects on thermoelectric properties of two-dimensional materials
    Zhang, Gang
    Zhang, Yong-Wei
    [J]. MECHANICS OF MATERIALS, 2015, 91 : 382 - 398
  • [55] Approaching the ideal elastic strain limit in silicon nanowires
    Zhang, Hongti
    Tersoff, Jerry
    Xu, Shang
    Chen, Huixin
    Zhang, Qiaobao
    Zhang, Kaili
    Yang, Yong
    Lee, Chun-Sing
    Tu, King-Ning
    Li, Ju
    Lu, Yang
    [J]. SCIENCE ADVANCES, 2016, 2 (08):
  • [56] Flexible piezotronic strain sensor
    Zhou, Jun
    Gu, Yudong
    Fei, Peng
    Mai, Wenjie
    Gao, Yifan
    Yang, Rusen
    Bao, Gang
    Wang, Zhong Lin
    [J]. NANO LETTERS, 2008, 8 (09) : 3035 - 3040
  • [57] Optical and Electrical Properties of Ga-Doped ZnO Nanowire Arrays on Conducting Substrates
    Zhou, Minjie
    Zhu, Haojun
    Jiao, Yang
    Rao, Yangyan
    Hark, Suikong
    Liu, Yang
    Peng, Lianmao
    Li, Quan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (20) : 8945 - 8947