Strain engineering of ZnO thermal conductivity

被引:20
作者
Antonio Seijas-Bellido, Juan [1 ]
Rurali, Riccardo [1 ]
Iniguez, Jorge [2 ,3 ]
Colombo, Luciano [4 ]
Melis, Claudio [4 ]
机构
[1] CSIC, ICMAB, Inst Ciencia Mat Barcelona, Campus Bellaterra, Barcelona 08193, Spain
[2] Luxembourg Inst Sci & Technol, Mat Res & Technol Dept, Ave Hauts Fourneaux 5, L-4362 Esch Sur Alzette, Luxembourg
[3] Univ Luxembourg, Phys & Mat Sci Res Unit, 41 Rue Brill, L-4422 Belvaux, Luxembourg
[4] Univ Cagliari, Dept Phys, I-09042 Monserrato, Ca, Italy
关键词
DOPED ZNO; THERMOELECTRIC PROPERTIES; OPTICAL-PROPERTIES; ZINC-OXIDE; TRANSPORT; DYNAMICS; GERMANIUM; PRESSURE; SILICON;
D O I
10.1103/PhysRevMaterials.3.065401
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using a combination of equilibrium classical molecular dynamics (within the Green-Kubo formalism) and the Boltzmann transport equation, we study the effect of strain on the ZnO thermal conductivity focusing in particular on the case of hydrostatic and uniaxial strain. The results show that in the case of hydrostatic strain up to +/- 4%, we can obtain thermal conductivity variations of more than 100%, while for uniaxial strains the calculated thermal conductivity variations are comparatively less pronounced. In particular, by imposing uniaxial compressive strains up to -4%, we estimate a corresponding thermal conductivity variation close to zero. The mode analysis based on the solution of the Boltzmann transport equation shows that for hydrostatic strains, the thermal conductivity variations are mainly due to a corresponding modification of the phonon relaxations times. Finally, we provide evidence that for uniaxial compressive strains the contribution of the phonon relaxations time is balanced by the increase of the group velocities leading to a thermal conductivity almost unaffected by strain.
引用
收藏
页数:8
相关论文
共 57 条
  • [1] Strain-induced bi-thermoelectricity in tapered carbon nanotubes
    Algharagholy, L. A. A.
    Pope, T.
    Lambert, C. J.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2018, 30 (10)
  • [2] Amirkhanov Kh. I., 1979, Soviet Physics - Solid State, V21, P1619
  • [3] [Anonymous], 2006, HDB CHEM PHYS 2006 2
  • [4] AVERKIN AA, 1972, SOV PHYS SEMICOND+, V5, P1954
  • [5] BARANSKII PI, 1981, SOV PHYS SEMICOND+, V15, P1061
  • [6] LATTICE CONDUCTIVITIES OF SINGLE-CRYSTAL AND POLYCRYSTALLINE MATERIALS AT MANTLE PRESSURES AND TEMPERATURES
    BECK, AE
    DARBHA, DM
    SCHLOESSIN, HH
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1978, 17 (01) : 35 - 53
  • [7] Effect of strain on the thermal conductivity of solids
    Bhowmick, Somnath
    Shenoy, Vijay B.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (16)
  • [8] Thermal conductivity of diamond and related materials from molecular dynamics simulations
    Che, JW
    Çagin, T
    Deng, WQ
    Goddard, WA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (16) : 6888 - 6900
  • [9] Linear response approach to the calculation of the effective interaction parameters in the LDA+U method
    Cococcioni, M
    de Gironcoli, S
    [J]. PHYSICAL REVIEW B, 2005, 71 (03):
  • [10] Bandgap Engineering of Strained Monolayer and Bilayer MoS2
    Conley, Hiram J.
    Wang, Bin
    Ziegler, Jed I.
    Haglund, Richard F., Jr.
    Pantelides, Sokrates T.
    Bolotin, Kirill I.
    [J]. NANO LETTERS, 2013, 13 (08) : 3626 - 3630