On the Dirichlet problem for hypoelliptic evolution equations: Perron-Wiener solution and a cone-type criterion

被引:9
作者
Kogoj, Alessia E. [1 ]
机构
[1] Univ Salerno, Dipartimento Ingn Informaz Ingn Elettr & Matemat, Via Giovanni Paolo 2,132, IT-84084 Fisciano, SA, Italy
关键词
Dirichlet problem; Perron-Wiener solution; Boundary behavior of Perron-Wiener solutions; Exterior cone criterion; Hypoelliptic operators; Potential theory; FUNDAMENTAL SOLUTION; HEAT-EQUATION;
D O I
10.1016/j.jde.2016.10.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show how to apply harmonic spaces potential theory in the study of the Dirichlet problem for a general class of evolution hypoelliptic partial differential equations of second order. We construct Perron-Wiener solution and we provide a sufficient condition for the regularity of the boundary points. Our criterion extends and generalizes the classical parabolic-cone criterion for the Heat equation due to Effros and Kazdan. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1524 / 1539
页数:16
相关论文
共 16 条
[1]  
[Anonymous], 1966, Lecture Notes in Mathematics
[2]  
[Anonymous], 1972, POTENTIAL THEORY HAR
[3]  
Bonfiglioli A, 2007, SPRINGER MONOGR MATH, P3
[5]   Non-Divergence Equations Structured on Hormander Vector Fields: Heat Kernels and Harnack Inequalities [J].
Bramanti, Marco ;
Brandolini, Luca ;
Lanconelli, Ermanno ;
Uguzzoni, Francesco .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 204 (961) :1-+
[6]   DIRICHLET PROBLEM FOR HEAT EQUATION [J].
EFFROS, EG ;
KAZDAN, JL .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (08) :683-&
[7]   APPLICATIONS OF CHOQUET SIMPLEXES TO ELLIPTIC AND PARABOLIC BOUNDARY VALUE PROBLEMS [J].
EFFROS, EG ;
KAZDAN, JL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1970, 8 (01) :95-&
[8]   LEVEL SETS OF THE FUNDAMENTAL SOLUTION AND HARNACK INEQUALITY FOR DEGENERATE EQUATIONS OF KOLMOGOROV TYPE [J].
GAROFALO, N ;
LANCONELLI, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 321 (02) :775-792
[9]   ESTIMATES OF THE FUNDAMENTAL SOLUTION AND WIENER CRITERION FOR THE HEAT-EQUATION ON THE HEISENBERG-GROUP [J].
GAROFALO, N ;
SEGALA, F .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (04) :1155-1196
[10]  
Kogoj A. E., 2004, MEDITERR J MATH, V1, P51, DOI DOI 10.1007/S00009-004-0004-8.MR2088032