A multi-level spectral deferred correction method

被引:47
作者
Speck, Robert [1 ,2 ]
Ruprecht, Daniel [2 ]
Emmett, Matthew [3 ]
Minion, Michael [4 ]
Bolten, Matthias [5 ]
Krause, Rolf [2 ]
机构
[1] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[2] Univ Svizzera Italiana, Inst Computat Sci, Lugano, Switzerland
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA
[4] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[5] Univ Wuppertal, Dept Math & Sci, D-42097 Wuppertal, Germany
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Spectral deferred corrections; Multi-level spectral deferred corrections; FAS correction; PFASST;
D O I
10.1007/s10543-014-0517-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC for the temporal integration of PDEs called multi-level spectral deferred corrections (MLSDC), where sweeps are performed on a hierarchy of levels and an FAS correction term, as in nonlinear multigrid methods, couples solutions on different levels. Three different strategies to reduce the computational cost of correction sweeps on the coarser levels are examined: reducing the degrees of freedom, reducing the order of the spatial discretization, and reducing the accuracy when solving linear systems arising in implicit temporal integration. Several numerical examples demonstrate the effect of multi-level coarsening on the convergence and cost of SDC integration. In particular, MLSDC can provide significant savings in compute time compared to SDC for a three-dimensional problem.
引用
收藏
页码:843 / 867
页数:25
相关论文
共 51 条
[11]  
Christlieb A, 2011, COMMUN MATH SCI, V9, P879
[12]   COMMENTS ON HIGH-ORDER INTEGRATORS EMBEDDED WITHIN INTEGRAL DEFERRED CORRECTION METHODS [J].
Christlieb, Andrew ;
Ong, Benjamin ;
Qiu, Jing-Mei .
COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2009, 4 (01) :27-56
[13]   INTEGRAL DEFERRED CORRECTION METHODS CONSTRUCTED WITH HIGH ORDER RUNGE-KUTTA INTEGRATORS [J].
Christlieb, Andrew ;
Ong, Benjamin ;
Qiu, Jing-Mei .
MATHEMATICS OF COMPUTATION, 2010, 79 (270) :761-783
[14]   SYMMETRIC PARAREAL ALGORITHMS FOR HAMILTONIAN SYSTEMS [J].
Dai, Xiaoying ;
Le Bris, Claude ;
Legoll, Frederic ;
Maday, Yvon .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (03) :717-742
[15]  
DANIEL JW, 1968, ACTA CIENT VENEZ, V19, P128
[16]   Spectral deferred correction methods for ordinary differential equations [J].
Dutt, A ;
Greengard, L ;
Rokhlin, V .
BIT, 2000, 40 (02) :241-266
[17]  
Emmett M., 2012, LECT NOTES COMPUTATI
[18]   TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS [J].
Emmett, Matthew ;
Minion, Michael L. .
COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2012, 7 (01) :105-132
[19]  
HAGSTROM T., 2006, COM APPL MATH COMPUT, V1, P169, DOI [DOI 10.2140/CAMCOS.2006.1.169, 10.2140/camcos.2006.1.169]
[20]  
Hairer E., 1987, Solving Ordinary Differential Equations I. Nonstiff Problems