A multi-level spectral deferred correction method

被引:47
作者
Speck, Robert [1 ,2 ]
Ruprecht, Daniel [2 ]
Emmett, Matthew [3 ]
Minion, Michael [4 ]
Bolten, Matthias [5 ]
Krause, Rolf [2 ]
机构
[1] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[2] Univ Svizzera Italiana, Inst Computat Sci, Lugano, Switzerland
[3] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, Berkeley, CA 94720 USA
[4] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[5] Univ Wuppertal, Dept Math & Sci, D-42097 Wuppertal, Germany
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Spectral deferred corrections; Multi-level spectral deferred corrections; FAS correction; PFASST;
D O I
10.1007/s10543-014-0517-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC for the temporal integration of PDEs called multi-level spectral deferred corrections (MLSDC), where sweeps are performed on a hierarchy of levels and an FAS correction term, as in nonlinear multigrid methods, couples solutions on different levels. Three different strategies to reduce the computational cost of correction sweeps on the coarser levels are examined: reducing the degrees of freedom, reducing the order of the spatial discretization, and reducing the accuracy when solving linear systems arising in implicit temporal integration. Several numerical examples demonstrate the effect of multi-level coarsening on the convergence and cost of SDC integration. In particular, MLSDC can provide significant savings in compute time compared to SDC for a three-dimensional problem.
引用
收藏
页码:843 / 867
页数:25
相关论文
共 51 条
[1]   Simultaneous space-time adaptive wavelet solution of nonlinear parabolic differential equations [J].
Alam, JM ;
Kevlahan, NKR ;
Vasilyev, OV .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 214 (02) :829-857
[2]  
ASCHER UM, 2000, COMPUTER METHODS ORD
[3]  
BOHMER K, 1984, Defect correction methods. Theory and applications, P1, DOI DOI 10.1007/978-3-7091-7023-6
[4]  
Bolten M., 2014, NIC SERIES, P345
[5]   High-order multi-implicit spectral deferred correction methods for problems of reactive flow [J].
Bourlioux, A ;
Layton, AT ;
Minion, ML .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 189 (02) :651-675
[6]   A multirate time integrator for regularized Stokeslets [J].
Bouzarth, Elizabeth L. ;
Minion, Michael L. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (11) :4208-4224
[7]  
BRANDT A, 1977, MATH COMPUT, V31, P333, DOI 10.1090/S0025-5718-1977-0431719-X
[8]  
Briggs W. L., 1987, MULTIGRID TUTORIAL
[9]  
Chorin A J., 1990, A Mathematical Introduction to Fluid Mechanics
[10]  
Chow E., 2006, SIAM SERIES SOFTWARE