GLOBAL SOLUTIONS OF THE EXPONENTIAL WAVE EQUATION WITH SMALL INITIAL DATA

被引:2
作者
Huh, Hyungjin [1 ]
机构
[1] Chung Ang Univ, Dept Math, Seoul 156756, South Korea
关键词
quasilinear wave; weakly linearly degenerate; double null form; HARMONIC MAPS;
D O I
10.4134/BKMS.2013.50.3.811
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the initial value problem of the exponential wave equation in Rn+1 for small initial data. We shows, in the case of n = 1, the global existence of solution by applying the formulation of first order quasilinear hyperbolic system which is weakly linearly degenerate. When n >= 2, a vector field method is applied to show the stability of a trivial solution phi = 0.
引用
收藏
页码:811 / 821
页数:11
相关论文
共 17 条
[1]  
Alinhac S, 2009, UNIVERSITEXT, pIX
[2]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[3]  
[Anonymous], 2000, MSJ Memoirs
[4]   Exponential wave maps [J].
Chiang, Yuan-Jen ;
Yang, Yi-Hu .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (12) :2521-2532
[5]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[6]  
Eells J., 1990, BANACH CTR PUBL 1, V27, P129
[7]  
Eells J., 1990, BANACH CTR PUBL 2, V27, P129
[8]  
HONG MC, 1992, MANUSCRIPTA MATH, V77, P41
[9]  
Hormander Lars, 1997, Lectures on nonlinear hyperbolic equations, Mathematiques & Applications, V26
[10]   FORMATION OF SINGULARITIES IN ONE-DIMENSIONAL NONLINEAR-WAVE PROPAGATION [J].
JOHN, F .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1974, 27 (03) :377-405