A dynamic decision model for diagnosis of dementia, Alzheimer's disease and Mild Cognitive Impairment

被引:9
|
作者
Carvalho, Carolina M. [1 ]
Seixas, Flavio L. [1 ]
Conci, Aura [1 ]
Muchaluat-Saade, Debora C. [1 ]
Laks, Jerson [2 ]
Boechat, Yolanda [3 ]
机构
[1] Fluminense Fed Univ, Inst Comp, Rua Passo Patria 156, BR-24210240 Niteroi, RJ, Brazil
[2] Univ Fed Rio de Janeiro, Ctr Alzheimers Dis & Related Disorders, Inst Psychiat, Av Venceslau Bras 71, BR-22290140 Rio De Janeiro, RJ, Brazil
[3] Fluminense Fed Univ, Antonio Pedro Univ Hosp, Ctr Reference Attent Hlth Elderly, Geriatr Serv, Av Jansen Melo 174, BR-24030220 Niteroi, RJ, Brazil
关键词
Dynamic decision model; Clinical decision support system; Computer-aided diagnosis; Dementia; Alzheimer's disease; Mild cognitive impairment; INSTRUMENTAL ACTIVITIES; STATE;
D O I
10.1016/j.compbiomed.2020.104010
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
CDSS (Clinical Decision Support System) is a domain within digital health that aims at supporting clinicians by suggesting the most probable diagnosis based on knowledge obtained from patient data. Usually, decision models used by current CDSS are static, i.e., they are not updated when new data are included, which could allow them to acquire new knowledge and enhance system accuracy. This paper proposes a dynamic decision model that automatically updates itself from classifier models using supervised machine learning algorithms. Our supervised learning process ranks several decision models using classifier performance measures, considering available patient data, filled by the health center, or local clinical guidelines. The decision model with the best performance is then selected to be used in our CDSS, which is designed for the diagnosis of D (Dementia), AD (Alzheimer's Disease), and MCI (Mild Cognitive Impairment). Patient datasets from CAD (Center for Alzheimer's Disease), at the Institute of Psychiatry of UFRJ (Federal University of Rio de Janeiro), and CRASI (Center of Reference in Attention to Health of the Elderly), at Antonio Pedro Hospital of UFF (Fluminense Federal University), are used. The main conclusion is that the proposed dynamic decision model, which offers the ability to be continuously refined with more recent diagnostic criteria or even personalized according to the local domain or clinical guidelines, provides an efficient alternative for diagnosis of Dementia, AD, and MCI.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Coin in the Hand Test for detection of malingering memory impairment in comparison with mild cognitive impairment and mild dementia in Alzheimer's disease
    Bartos, A.
    Raisova, M.
    CESKA A SLOVENSKA NEUROLOGIE A NEUROCHIRURGIE, 2019, 82 (03) : 316 - 321
  • [22] Neuropsychiatric symptoms and brain morphology in patients with mild cognitive impairment and Alzheimer's disease with dementia
    Siafarikas, Nikias
    Alnaes, Dag
    Monereo-Sanchez, Jennifer
    Lund, Martina J.
    Selbaek, Geir
    Stylianou-Korsnes, Maria
    Persson, Karin
    Barca, Maria Lage
    Almdahl, Ina Selseth
    Fladby, Tormod
    Aarsland, Dag
    Andreassen, Ole A.
    Westlye, Lars T.
    INTERNATIONAL PSYCHOGERIATRICS, 2021, 33 (11) : 1217 - 1228
  • [23] Severity Distribution of Alzheimer's Disease Dementia and Mild Cognitive Impairment in the Framingham Heart Study
    Yuan, Jing
    Maserejian, Nancy
    Liu, Yulin
    Devine, Sherral
    Gillis, Cai
    Massaro, Joseph
    Au, Rhoda
    JOURNAL OF ALZHEIMERS DISEASE, 2021, 79 (02) : 807 - 817
  • [24] New perspectives in the diagnosis of mild cognitive impairment and Alzheimer's disease
    Subirana, Judit
    ALOMA-REVISTA DE PSICOLOGIA CIENCIES DE L EDUCACIO I DE L ESPORT, 2012, 30 (01): : 97 - 107
  • [25] Diagnosis of Mild Cognitive Impairment Due to Alzheimer's Disease with Transcranial Magnetic Stimulation
    Padovani, Alessandro
    Benussi, Alberto
    Cantoni, Valentina
    Dell'Era, Valentina
    Cotelli, Maria Sofia
    Caratozzolo, Salvatore
    Turrone, Rosanna
    Rozzini, Luca
    Alberici, Antonella
    Altomare, Daniele
    Depari, Alessandro
    Flammini, Alessandra
    Frisoni, Giovanni B.
    Borroni, Barbara
    JOURNAL OF ALZHEIMERS DISEASE, 2018, 65 (01) : 221 - 230
  • [26] Memantine in mild cognitive impairment and mild dementia of Alzheimer's disease: theoretical background, clinical trials and recommendations
    Sobow, Tomasz
    AKTUALNOSCI NEUROLOGICZNE, 2014, 14 (01): : 54 - 60
  • [27] Anosognosia in very mild Alzheimer's disease but not in mild cognitive impairment
    Kalbe, E
    Salmon, E
    Perani, D
    Holthoff, V
    Sorbi, S
    Elsner, A
    Weisenbach, S
    Brand, M
    Lenz, O
    Kessler, J
    Luedecke, S
    Ortelli, P
    Herholz, K
    DEMENTIA AND GERIATRIC COGNITIVE DISORDERS, 2005, 19 (5-6) : 349 - 356
  • [28] Dynamic cerebral autoregulation in Alzheimer's disease and mild cognitive impairment: A systematic review
    Heutz, Rachel
    Claassen, Jurgen
    Feiner, Sanne
    Davies, Aaron
    Gurung, Dewakar
    Panerai, Ronney B.
    de Heus, Rianne
    Beishon, Lucy C.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2023, 43 (08) : 1223 - 1236
  • [29] Cognitive telerehabilitation in mild cognitive impairment, Alzheimer's disease and frontotemporal dementia: A systematic review
    Cotelli, Maria
    Manenti, Rosa
    Brambilla, Michela
    Gobbi, Elena
    Ferrari, Clarissa
    Binetti, Giuliano
    Cappa, Stefano F.
    JOURNAL OF TELEMEDICINE AND TELECARE, 2019, 25 (02) : 67 - 79
  • [30] Longitudinal Cognitive Decline in Patients With Mild Cognitive Impairment or Dementia Due to Alzheimer’s Disease
    Yen Ying Lim
    J. Kong
    P. Maruff
    J. Jaeger
    E. Huang
    E. Ratti
    The Journal of Prevention of Alzheimer's Disease, 2022, 9 : 178 - 183