Induced Turan Numbers

被引:12
|
作者
Loh, Po-Shen [1 ]
Tait, Michael [1 ]
Timmons, Craig [2 ]
Zhou, Rodrigo M. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[2] Calif State Univ Sacramento, Dept Math & Stat, Sacramento, CA 95819 USA
[3] Univ Fed Rio de Janeiro, COPPE, BR-21941450 Rio De Janeiro, RJ, Brazil
基金
美国国家科学基金会;
关键词
EXCLUDING INDUCED SUBGRAPHS; MAXIMUM NUMBER; GRAPHS; PENTAGONS; BOUNDS;
D O I
10.1017/S0963548317000542
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The classical Kovari-Sos-Turan theorem states that if G is an n-vertex graph with no copy of K-s,K-t as a subgraph, then the number of edges in G is at most O(n(2-1/s)). We prove that if one forbids K-s,K-t as an induced subgraph, and also forbids any fixed graph H as a (not necessarily induced) subgraph, the same asymptotic upper bound still holds, with different constant factors. This introduces a non-trivial angle from which to generalize Turan theory to induced forbidden subgraphs, which this paper explores. Along the way, we derive a non-trivial upper bound on the number of cliques of fixed order in a K-r-free graph with no induced copy of K-s,K-t. This result is an induced analogue of a recent theorem of Alon and Shikhelman and is of independent interest.
引用
收藏
页码:274 / 288
页数:15
相关论文
共 50 条
  • [41] UNIFORM TURAN DENSITY OF CYCLES
    Bucic, Matija
    Cooper, Jacob W.
    Kral, Daniel
    Mohr, Samuel
    Correia, David Munha
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (07) : 4765 - 4809
  • [42] On Turan-good graphs
    Gerbner, Daniel
    DISCRETE MATHEMATICS, 2021, 344 (08)
  • [43] Ramsey-Turan theory
    Simonovits, M
    Sós, VT
    DISCRETE MATHEMATICS, 2001, 229 (1-3) : 293 - 340
  • [44] Turan number of generalized triangles
    Norin, S.
    Yepremyan, L.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2017, 146 : 312 - 343
  • [45] Vertex Turan problems in the hypercube
    Johnson, J. Robert
    Talbot, John
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (04) : 454 - 465
  • [46] Turan determinants of Bessel functions
    Baricz, Arpad
    Pogany, Tibor K.
    FORUM MATHEMATICUM, 2014, 26 (01) : 295 - 322
  • [47] A new Turan number for quadrilateral
    Shao, Zehui
    Xu, Jin
    Xu, Xiaodong
    UTILITAS MATHEMATICA, 2009, 79 : 51 - 58
  • [48] A NOTE ON THE TURAN FUNCTION OF EVEN CYCLES
    Pikhurko, Oleg
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (11) : 3687 - 3692
  • [49] Degenerate Turan densities of sparse hypergraphs
    Chong Shangguan
    Tamo, Itzhak
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 173
  • [50] Turan type inequalities for Kratzel functions
    Baricz, Arpad
    Jankov, Dragana
    Pogany, Tibor K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (02) : 716 - 724