Accurate solution of the Dirac equation on Lagrange meshes

被引:21
作者
Baye, Daniel [1 ]
Filippin, Livio [1 ]
Godefroid, Michel [1 ]
机构
[1] Univ Libre Brussels, B-1050 Brussels, Belgium
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
关键词
QUANTUM-MECHANICAL PROBLEMS; ATOMS;
D O I
10.1103/PhysRevE.89.043305
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Lagrange-mesh method is an approximate variational method taking the form of equations on a grid because of the use of a Gauss quadrature approximation. With a basis of Lagrange functions involving associated Laguerre polynomials related to the Gauss quadrature, the method is applied to the Dirac equation. The potential may possess a 1/r singularity. For hydrogenic atoms, numerically exact energies and wave functions are obtained with small numbers n + 1 of mesh points, where n is the principal quantum number. Numerically exact mean values of powers -2 to 3 of the radial coordinate r can also be obtained with n + 2 mesh points. For the Yukawa potential, a 15-digit agreement with benchmark energies of the literature is obtained with 50 or fewer mesh points.
引用
收藏
页数:9
相关论文
共 29 条
  • [1] Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
  • [2] Calculation of two-photon decay rates of hydrogen-like ions by using B-polynomials
    Amaro, P.
    Surzhykov, A.
    Parente, F.
    Indelicato, P.
    Santos, J. P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (24)
  • [3] [Anonymous], 1967, Orthogonal Polynomials
  • [4] Lagrange-mesh method for quantum-mechanical problems
    Baye, D
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (05): : 1095 - 1109
  • [5] The unexplained accuracy of the Lagrange-mesh method
    Baye, D
    Hesse, M
    Vincke, M
    [J]. PHYSICAL REVIEW E, 2002, 65 (02):
  • [6] CONSTANT-STEP LAGRANGE MESHES FOR CENTRAL POTENTIALS
    BAYE, D
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1995, 28 (20) : 4399 - 4412
  • [7] GENERALIZED MESHES FOR QUANTUM-MECHANICAL PROBLEMS
    BAYE, D
    HEENEN, PH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (11): : 2041 - 2059
  • [8] BAYE D, UNPUB
  • [9] Exact nonrelativistic polarizabilities of the hydrogen atom with the Lagrange-mesh method
    Baye, Daniel
    [J]. PHYSICAL REVIEW A, 2012, 86 (06):
  • [10] Integrals of Lagrange functions and sum rules
    Baye, Daniel
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (39)