Comparative Sequence and Structure Analysis Reveals the Conservation and Diversity of Nucleotide Positions and Their Associated Tertiary Interactions in the Riboswitches

被引:16
作者
Appasamy, D. [1 ]
Ramlan, Effirul Ikhwan [2 ]
Firdaus-Raih, Mohd [1 ,3 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Biosci & Biotechnol, Bangi 43600, Selangor, Malaysia
[2] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Artificial Intelligence, Kuala Lumpur, Malaysia
[3] Univ Kebangsaan Malaysia, Inst Syst Biol, Bangi 43600, Selangor, Malaysia
关键词
RNA APTAMER COMPLEX; S-ADENOSYLMETHIONINE; GENE-EXPRESSION; MOLECULAR RECOGNITION; LYSINE RIBOSWITCH; LOOP INTERACTION; MESSENGER-RNAS; REGULATORY RNA; FOLDING MOTIF; VIRUS GENOME;
D O I
10.1371/journal.pone.0073984
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The tertiary motifs in complex RNA molecules play vital roles to either stabilize the formation of RNA 3D structure or to provide important biological functionality to the molecule. In order to better understand the roles of these tertiary motifs in riboswitches, we examined 11 representative riboswitch PDB structures for potential agreement of both motif occurrences and conservations. A total of 61 unique tertiary interactions were found in the reference structures. In addition to the expected common A-minor motifs and base-triples mainly involved in linking distant regions the riboswitch structures three highly conserved variants of A-minor interactions called G-minors were found in the SAM-I and FMN riboswitches where they appear to be involved in the recognition of the respective ligand's functional groups. From our structural survey as well as corresponding structure and sequence alignments, the agreement between motif occurrences and conservations are very prominent across the representative riboswitches. Our analysis provide evidence that some of these tertiary interactions are essential components to form the structure where their sequence positions are conserved despite a high degree of diversity in other parts of the respective riboswitches sequences. This is indicative of a vital role for these tertiary interactions in determining the specific biological function of riboswitch.
引用
收藏
页数:20
相关论文
共 72 条
[1]   Comprehensive survey and geometric classification of base triples in RNA structures [J].
Abu Almakarem, Amal S. ;
Petrov, Anton I. ;
Stombaugh, Jesse ;
Zirbel, Craig L. ;
Leontis, Neocles B. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (04) :1407-1423
[2]   New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control [J].
Barrick, JE ;
Corbino, KA ;
Winkler, WC ;
Nahvi, A ;
Mandal, M ;
Collins, J ;
Lee, M ;
Roth, A ;
Sudarsan, N ;
Jona, I ;
Wickiser, JK ;
Breaker, RR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (17) :6421-6426
[3]   The distributions, mechanisms, and structures of metabolite-binding riboswitches [J].
Barrick, Jeffrey E. ;
Breaker, Ronald R. .
GENOME BIOLOGY, 2007, 8 (11)
[4]   Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine [J].
Batey, RT ;
Gilbert, SD ;
Montange, RK .
NATURE, 2004, 432 (7015) :411-415
[5]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[6]   A loop-loop interaction and a K-turn motif located in the lysine aptamer domain are important for the riboswitch gene regulation control [J].
Blouin, Simon ;
Lafontaine, Daniel A. .
RNA, 2007, 13 (08) :1256-1267
[7]   Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation [J].
Blouin, Simon ;
Chinnappan, Raja ;
Lafontaine, Daniel A. .
NUCLEIC ACIDS RESEARCH, 2011, 39 (08) :3373-3387
[8]   Solution structure of the HIV-2 TAR-argininamide complex [J].
Brodsky, AS ;
Williamson, JR .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 267 (03) :624-639
[9]   The Molecular Interactions That Stabilize RNA Tertiary Structure: RNA Motifs, Patterns, and Networks [J].
Butcher, Samuel E. ;
Pyle, Anna Marie .
ACCOUNTS OF CHEMICAL RESEARCH, 2011, 44 (12) :1302-1311
[10]   ARGININE-MEDIATED RNA RECOGNITION - THE ARGININE FORK [J].
CALNAN, BJ ;
TIDOR, B ;
BIANCALANA, S ;
HUDSON, D ;
FRANKEL, AD .
SCIENCE, 1991, 252 (5009) :1167-1171