Bifurcations in the Sakaguchi-Kuramoto model

被引:51
|
作者
Omel'chenko, Oleh E. [1 ,2 ]
Wolfrum, Matthias [1 ]
机构
[1] Karl Weierstrass Inst Math, D-10117 Berlin, Germany
[2] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
Synchronization; Coupled oscillators; Sakaguchi-Kuramoto model; Ott-Antonsen reduction; LOCKED STATE; SYNCHRONIZATION; POPULATIONS; SPECTRUM;
D O I
10.1016/j.physd.2013.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the Sakaguchi-Kuramoto model of coupled phase oscillators in a continuum limit given by a frequency dependent version of the Ott-Antonsen system. Based on a self-consistency equation, we provide a detailed analysis of partially synchronized states, their bifurcation from the completely incoherent state and their stability properties. We use this method to analyze the bifurcations for various types of frequency distributions and explain the appearance of non-universal synchronization transitions. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 50 条
  • [41] A DIFFUSION LIMIT FOR THE PARABOLIC KURAMOTO-SAKAGUCHI EQUATION WITH INERTIA
    Ha, Seung-Yeal
    Shim, Woojoo
    Zhang, Yinglong
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1591 - 1638
  • [42] NONLINEAR STABILITY OF STATIONARY SOLUTIONS TO THE KURAMOTO-SAKAGUCHI EQUATION WITH FRUSTRATION
    Ha, Seung-Yeal
    Park, Hansol
    Zhang, Yinglong
    NETWORKS AND HETEROGENEOUS MEDIA, 2020, 15 (03) : 427 - 461
  • [43] BIFURCATIONS IN KURAMOTO-SIVASHINSKY EQUATIONS
    Kashchenko, S. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (01) : 958 - 973
  • [44] A Nonlocal Version of Wavefront Tracking Motivated by Kuramoto-Sakaguchi Equation
    Amadori, Debora
    Ha, Seung-Yeal
    Park, Jinyeong
    INNOVATIVE ALGORITHMS AND ANALYSIS, 2017, 16 : 1 - 24
  • [45] On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay
    Honda, Hirotada
    NETWORKS AND HETEROGENEOUS MEDIA, 2024, 19 (01) : 1 - 23
  • [46] Bifurcations and global stability of synchronized stationary states in the Kuramoto model for oscillator populations
    Acebrón, J.A.
    Perales, A.
    Spigler, R.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (1 II): : 1 - 016218
  • [47] Bifurcations in the Time-Delayed Kuramoto Model of Coupled Oscillators: Exact Results
    David Métivier
    Shamik Gupta
    Journal of Statistical Physics, 2019, 176 : 279 - 298
  • [48] Remarks on the stability properties of the Kuramoto–Sakaguchi–Fokker–Planck equation with frustration
    Seung-Yeal Ha
    Doheon Kim
    Jaeseung Lee
    Yinglong Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [49] Dynamics of the Kuramoto-Sakaguchi oscillator network with asymmetric order parameter
    Chen, Bolun
    Engelbrecht, Jan R.
    Mirollo, Renato
    CHAOS, 2019, 29 (01)
  • [50] On Kuramoto-Sakaguchi-type Fokker-Planck equation with delay
    Honda H.
    Networks and Heterogeneous Media, 2023, 19 (01) : 1 - 23