Bifurcations in the Sakaguchi-Kuramoto model

被引:51
|
作者
Omel'chenko, Oleh E. [1 ,2 ]
Wolfrum, Matthias [1 ]
机构
[1] Karl Weierstrass Inst Math, D-10117 Berlin, Germany
[2] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
Synchronization; Coupled oscillators; Sakaguchi-Kuramoto model; Ott-Antonsen reduction; LOCKED STATE; SYNCHRONIZATION; POPULATIONS; SPECTRUM;
D O I
10.1016/j.physd.2013.08.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the Sakaguchi-Kuramoto model of coupled phase oscillators in a continuum limit given by a frequency dependent version of the Ott-Antonsen system. Based on a self-consistency equation, we provide a detailed analysis of partially synchronized states, their bifurcation from the completely incoherent state and their stability properties. We use this method to analyze the bifurcations for various types of frequency distributions and explain the appearance of non-universal synchronization transitions. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 50 条
  • [21] Bifurcations and Patterns in the Kuramoto Model with Inertia
    Hayato Chiba
    Georgi S. Medvedev
    Matthew S. Mizuhara
    Journal of Nonlinear Science, 2023, 33
  • [22] Bifurcations and Patterns in the Kuramoto Model with Inertia
    Chiba, Hayato
    Medvedev, Georgi S.
    Mizuhara, Matthew S.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (05)
  • [23] Synchronization of Kuramoto-Sakaguchi model with the distributed time interactions
    Hsia, Chun-Hsiung
    Jung, Chang-Yeol
    Kwon, Bongsuk
    Moon, Sunghwan
    CHAOS SOLITONS & FRACTALS, 2024, 179
  • [24] Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators
    Yue, Wenqi
    Smith, Lachlan D.
    Gottwald, Georg A.
    PHYSICAL REVIEW E, 2020, 101 (06)
  • [25] Dynamical phase transitions in generalized Kuramoto model with distributed Sakaguchi phase
    Banerjee, Amitava
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [26] Stability in the Kuramoto-Sakaguchi model for finite networks of identical oscillators
    Mihara, Antonio
    Medrano-T, Rene O.
    NONLINEAR DYNAMICS, 2019, 98 (01) : 539 - 550
  • [27] A stochastic approximation for the finite-size Kuramoto-Sakaguchi model
    Yue, Wenqi
    Gottwald, Georg A.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 468
  • [28] Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model
    Brede, Markus
    Kalloniatis, Alexander C.
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [29] Spatiotemporal dynamics of the Kuramoto-Sakaguchi model with time-dependent connectivity
    Banerjee, Amitava
    Acharyya, Muktish
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [30] KURAMOTO ORDER PARAMETERS AND PHASE CONCENTRATION FOR THE KURAMOTO-SAKAGUCHI EQUATION WITH FRUSTRATION
    Ha, Seung-Yeal
    Morales, Javier
    Zhang, Yinglong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (7-8) : 2579 - 2612