A spatially structured adaptive two-stage model for retrieving ground-level PM2.5 concentrations from VIIRS AOD in China

被引:54
|
作者
Yao, Fei [1 ,2 ]
Wu, Jiansheng [1 ,3 ]
Li, Weifeng [4 ,5 ]
Peng, Jian [3 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Key Lab Urban Habitat Environm Sci & Technol, Shenzhen 518055, Peoples R China
[2] Univ Edinburgh, Sch GeoSci, Edinburgh, Midlothian, Scotland
[3] Peking Univ, Coll Urban & Environm Sci, Minist Educ, Lab Earth Surface Proc, Beijing 100871, Peoples R China
[4] Univ Hong Kong, Dept Urban Planning & Design, Hong Kong, Peoples R China
[5] Univ Hong Kong, Shenzhen Inst Res & Innovat, Shenzhen 518075, Peoples R China
基金
中国国家自然科学基金;
关键词
PM2.5; VIIRS AOD; Spatially structured adaptive; Two-stage model; China; AEROSOL OPTICAL DEPTH; LONG-TERM EXPOSURE; SATELLITE; POLLUTION; REGION; MODIS; GOCI;
D O I
10.1016/j.isprsjprs.2019.03.011
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
While the aerosol optical depth (AOD) product from the Visible Infrared Imaging Suite (VIIRS) instrument has proven effective for estimating regional ground-level particle concentrations with aerodynamic diameters less than 2.5 mu m (PM2.5), its performance at larger spatial scales remains unclear. Despite the wide application of statistical models in building ground-level PM2.5 satellite remote sensing retrieval models, a limited number of studies have considered the spatiotemporal heterogeneities for model structures. Taking China as the study area, we used the VIIRS AOD, together with multi-source auxiliary variables, to develop a spatially structured adaptive two-stage model to estimate ground-level PM2.5 concentrations at a 6-km spatial resolution. To this end, we first defined and calculated a dual distance from the ground-level PM2.5 monitoring data. We then applied the unweighted pair-group method with arithmetic means on dual distances and obtained 13 spatial clusters. Subsequently, we combined the time fixed effects regression (TEFR) model and geographically weighted regression (GWR) model to develop the spatially structured adaptive two-stage model. For each spatial cluster, we examined all possible combinations of auxiliary variables and determined the best model structure according to multiple statistical test results. Finally, we obtained the PM2.5 estimates through regression mapping. At least seven model-fitting data records per day made a good threshold that could best overcome the model overfitting induced by the second-stage GWR model at the minimum price of losing samples. The overall model fitting and ten-fold cross validation (CV) R-2 were 0.82 and 0.60, respectively, under that threshold. Model performances among different spatial clusters differed to a certain extent. High-CV R-2 values always exceeded 0.6 while low CV R-2 values less than 0.5 also existed. Both the size of the model-fitting data records and the extent of urban industrial characteristics of spatial clusters accounted for these differences. The PM2.5 estimates agreed well with the PM2.5 observations with correlation coefficients all exceeding 0.5 at the monthly, seasonal, and annual scales. East of Hu's line and north of the Yangtze River were characterized by high PM2.5 concentrations. This study contributes to the understanding of how well VIIRS AOD can retrieve ground-level PM2.5 concentrations at the national scale and strategies for building ground-level PM2.5 satellite remote sensing retrieval models.
引用
收藏
页码:263 / 276
页数:14
相关论文
共 50 条
  • [31] LONG-TERM TREND OF GROUND-LEVEL PM2.5 CONCENTRATIONS OVER 2012-2017 IN CHINA
    Liu, Ming
    Zhou, Gaoxiang
    Saari, Rebecca K.
    Li, Jonathan
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7842 - 7845
  • [32] Estimating Ground-Level Hourly PM2.5 Concentrations Over North China Plain with Deep Neural Networks
    Zhang, Wenhao
    Zheng, Fengjie
    Zhang, Wenpeng
    Yang, Xiufeng
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2021, 49 (08) : 1839 - 1852
  • [33] Estimating Daily PM2.5 Concentrations in Beijing Using 750-M VIIRS IP AOD Retrievals and a Nested Spatiotemporal Statistical Model
    Yao, Fei
    Wu, Jiansheng
    Li, Weifeng
    Peng, Jian
    REMOTE SENSING, 2019, 11 (07)
  • [34] A Two-Stage Method to Estimate the Contribution of Road Traffic to PM2.5 Concentrations in Beijing, China
    Fang, Xin
    Li, Runkui
    Xu, Qun
    Bottai, Matteo
    Fang, Fang
    Cao, Yang
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2016, 13 (01):
  • [35] Inferring Near-Surface PM2.5 Concentrations from the VIIRS Deep Blue Aerosol Product in China: A Spatiotemporally Weighted Random Forest Model
    Xue, Wenhao
    Wei, Jing
    Zhang, Jing
    Sun, Lin
    Che, Yunfei
    Yuan, Mengfei
    Hu, Xiaomin
    REMOTE SENSING, 2021, 13 (03) : 1 - 17
  • [36] Estimating ground-level PM2.5 concentration using Landsat 8 in Chengdu, China
    Chen, Yunping
    Han, Weihong
    Chen, Shuzhong
    Tong, Ling
    REMOTE SENSING OF THE ATMOSPHERE, CLOUDS, AND PRECIPITATION V, 2014, 9259
  • [37] Estimation of ground-level PM2.5concentration using MODIS AOD and corrected regression model over Beijing, China
    Xu, Xinghan
    Zhang, Chengkun
    PLOS ONE, 2020, 15 (10):
  • [38] ESTIMATING GROUND-LEVEL PM2.5 CONCENTRATION IN BEIJING USING BP ANN MODEL FROM SATELLITE DATA
    Li, Ying
    Xue, Yong
    Guang, Jie
    Mei, Linlu
    She, Lu
    Fan, Cheng
    Chen, Guili
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4870 - 4873
  • [39] Estimating daily ground-level PM2.5 in China with random-forest-based spatiotemporal kriging
    Shao, Yanchuan
    Ma, Zongwei
    Wang, Jianghao
    Bi, Jun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 740 (740)
  • [40] Prediction of hourly ground-level PM2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China
    Mao, Xi
    Shen, Tao
    Feng, Xiao
    ATMOSPHERIC POLLUTION RESEARCH, 2017, 8 (06) : 1005 - 1015