On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces

被引:47
作者
Baktash, E. [3 ,4 ]
Cho, Y. J. [1 ,2 ]
Jalili, M. [5 ]
Saadati, R. [6 ,7 ]
Vaezpour, S. M. [6 ]
机构
[1] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[2] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[3] Islamic Azad Univ, Dept Basic Sci, Ayatollah Amoli Branch, Amol, Iran
[4] Youngs Researchers Club, Amol, Iran
[5] Islamic Azad Univ, Dept Mech Engn, Ayatollah Amoli Branch, Amol, Iran
[6] Amir Kabir Univ Technol, Dept Math & Comp Sci, Tehran 15914, Iran
[7] Univ Shomal, Fac Sci, Amol, Iran
关键词
D O I
10.1155/2008/902187
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, the stability of the cubic functional equation f (2x + y) + f(2x - y) = 2f (x + y) + 2f (x - y) + 12f (x) in fuzzy normed spaces was proved in earlier work; and the stability of the additive functional equations f(x + y) = f(x) + f(y), 2f((x + y)/2) = f(x) + f(y) in random normed spaces was proved as well. In this paper, we prove the stability of the cubic functional equation f(2x + y) + f(2x - y) = 2f(x + y) + 2f(x - y) + 12f(x) in random normed spaces by an alternative proof which provides a better estimation. Finally, we prove the stability of the quartic functional equation f(2x + y) + f(2x - y) = 4f(x + y) + 24f(x) - 6f(y) in random normed spaces. Copyright (C) 2008 E. Baktash et al.
引用
收藏
页数:11
相关论文
共 21 条
[1]  
ALSINA C, 1987, INT SCHRIFTENREIHE N, V80, P263
[2]  
[Anonymous], 1983, N HOLLAND SERIES PRO
[3]  
[Anonymous], DOKL AKAD NAUK SSSR
[4]  
[Anonymous], 2001, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis
[5]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI DOI 10.2969/JMSJ/00210064
[6]   On the stability of J*-homomorphisms [J].
Baak, C ;
Moslehian, MS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (01) :42-48
[7]  
Chang S-S, 2001, NONLINEAR OPERATOR T
[8]  
CZERWIK S., 2002, Functional Equations and Inequalities in Several Variables
[9]  
Hadzic O, 2001, Mathematics and Its Applications, V536
[10]  
Hyers D. H., 1998, PROGR NONLINEAR DIFF, V34