Data-Driven Modelling: Concepts, Approaches and Experiences

被引:0
作者
Solomatine, D. [1 ]
See, L. M. [2 ]
Abrahart, R. J. [3 ]
机构
[1] UNESCO IHE Inst Water Educ, POB 3015, NL-2601 DA Delft, Netherlands
[2] Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England
[3] Univ Nottingham, Sch Geog, Nottingham NG7 2RD, England
来源
PRACTICAL HYDROINFORMATICS: COMPUTATIONAL INTELLIGENCE AND TECHNOLOGICAL DEVELOPMENTS IN WATER APPLICATIONS | 2008年 / 68卷
关键词
Data-driven modelling; data mining; computational intelligence; fuzzy rule-based systems; genetic algorithms; committee approaches; hydrology;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Data-driven modelling is the area of hydroinformatics undergoing fast development. This chapter reviews the main concepts and approaches of data-driven modelling, which is based on computational intelligence and machine-learning methods. A brief overview of the main methods - neural networks, fuzzy rule-based systems and genetic algorithms, and their combination via committee approaches is provided along with hydrological examples and references to the rest of the book.
引用
收藏
页码:17 / +
页数:5
相关论文
共 50 条
  • [31] Hydrologic Performance Simulation of Green Infrastructures: Why Data-Driven Modelling Can Be Useful?
    Yang, Yang
    Chui, Ting Fong May
    NEW TRENDS IN URBAN DRAINAGE MODELLING, UDM 2018, 2019, : 480 - 484
  • [32] Nonlinear Data-driven Process Modelling using Slow Feature Analysis and Neural Networks
    Corrigan, Jeremiah
    Zhang, Jie
    ICINCO: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 1, 2019, : 439 - 446
  • [33] Physics-based and data-driven modelling and simulation of Solid Oxide Fuel Cells
    Langner, Eric
    El Hachemi, Mohamed
    El Hachemi, Mohamed
    Belouettar-Mathis, Elias
    Makradi, Ahmed
    Wallmersperger, Thomas
    Gouttebroze, Sylvain
    Preisig, Heinz
    Andersen, Casper Welzel
    Shao, Qian
    Hu, Heng
    Belouettar, Salim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 96 : 962 - 983
  • [34] An MLOps Framework to Data-Driven Modelling of Digital Twins with an Application to Virtual Test Rigs
    Kruschinski, Denis
    Ngassam, Dylan Tchawou
    Durak, Umut
    Hartmann, Sven
    ADVANCES IN CONCEPTUAL MODELING, ER 2024 WORKSHOPS, 2025, 14932 : 71 - 86
  • [35] Data-driven through-process modelling of aluminum extrusion: Predicting mechanical properties
    Øien, Christian Dalheim
    Ringen, Geir
    Manufacturing Letters, 2024, 41 : 1274 - 1281
  • [36] Data-driven through-process modelling of aluminum extrusion: predicting mechanical properties
    Oien, Christian Dalheim
    Ringen, Geir
    MANUFACTURING LETTERS, 2024, 41 : 1274 - 1281
  • [37] Application of Data-Driven Modelling to Flood Forecasting with a Case Study for the Huai River in China
    Solomatine, Dimitti P.
    Xue Yunpeng
    Zhu Chuanbao
    Yan, Li
    PROCEEDINGS OF THE 1ST INTERNATIONAL YELLOW RIVER FORUM ON RIVER BASIN MANAGEMENT, VOL III, 2003, : 140 - 150
  • [38] Data-driven Modelling of the Climatic Impact on the Microbial Food S afety of Raw Milk
    Katsini, Lydia
    Lopez, Carlos Andre Munoz
    Bhonsale, Satyajeet
    Roufou, Styliani
    Griffin, Sholeem
    Valdramidis, Vasilis
    Akkermans, Simen
    Polanska, Monika
    Van Impe, Jan
    12TH INTERNATIONAL CONFERENCE ON SIMULATION AND MODELLING IN THE FOOD AND BIO-INDUSTRY 2022 (FOODSIM'2022), 2022, : 28 - 32
  • [39] Data-driven rainfall/runoff modelling based on a neuro-fuzzy inference system
    Bartoletti, N.
    Casagli, F.
    Marsili-Libelli, S.
    Nardi, A.
    Palandri, L.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2018, 106 : 35 - 47
  • [40] Monthly Rainfall-Runoff Modeling at Watershed Scale: A Comparative Study of Data-Driven and Theory-Driven Approaches
    Chang, Won
    Chen, Xi
    WATER, 2018, 10 (09)