Gaussian field theory for the Brownian motion of a solvated particle

被引:2
|
作者
Speck, Thomas [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 2, D-40225 Dusseldorf, Germany
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 01期
关键词
MODEL;
D O I
10.1103/PhysRevE.88.014103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An alternative derivation of Brownian motion is presented. Instead of supplementing the linearized Navier-Stokes equations with a fluctuating force, we directly assume a Gaussian action functional for solvent velocity fluctuations. Solvating a particle amounts to expelling the solvent and prescribing a boundary condition to the solvent on the interface that is shared with the solute. We study the dynamical effects of this boundary condition on the solvent and derive explicit expressions for the solvent mean flow and velocity correlations. Moreover, we show that the probability to observe solvent velocity fluctuations that are compatible with the boundary condition reproduces random Brownian motion of the solvated particle. We explicitly calculate the translational and rotational diffusion coefficients of a spherical particle using the presented formalism.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Brownian motion field dependent mobility theory of hopping transport process
    Ke, Lin
    Chua, Soo Jin
    Han, Ronald Cai Cheng
    Ting, Lin Ting
    Vijila, Chellapan
    Journal of Applied Physics, 2006, 99 (11):
  • [42] Brownian motion field dependent mobility theory of hopping transport process
    Ke, Lin
    Chua, Soo Jin
    Han, Ronald Cai Cheng
    Ting, Lin Ting
    Vijila, Chellapan
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (11)
  • [43] MOTION OF BROWNIAN PARTICLE IN A PERIODIC POTENTIAL
    GOLDSTEIN, M
    JOURNAL OF CHEMICAL PHYSICS, 1963, 39 (01): : 243 - &
  • [44] Analysis on the Brownian motion of a single particle
    Furth, R
    ANNALEN DER PHYSIK, 1917, 53 (11) : 177 - 213
  • [45] Brownian motion of a particle with arbitrary shape
    Cichocki, Bogdan
    Ekiel-Jezewska, Maria L.
    Wajnryb, Eligiusz
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (21):
  • [46] MEASUREMENTS OF BROWNIAN MOTION OF A PARTICLE IN A GAS
    ELRICK, RM
    PHYSICS OF FLUIDS, 1966, 9 (10) : 2071 - &
  • [47] Ballistic motion of a Brownian particle Reply
    Raizen, Mark G.
    Li, Tongcang
    PHYSICS TODAY, 2015, 68 (06) : 11 - 11
  • [48] Brownian motion of particle in ideal gas
    Majorov, V.P.
    Kratkie Soobshcheniya po Fizike, 2001, (02): : 17 - 31
  • [49] Brownian motion of a dust particle in a plasma
    Mendonca, JT
    Shukla, PK
    Martins, AM
    Guerra, R
    PHYSICS OF PLASMAS, 1997, 4 (03) : 674 - 677
  • [50] BROWNIAN-MOTION OF A QUANTUM PARTICLE
    KUMAR, D
    PHYSICAL REVIEW A, 1984, 29 (03) : 1571 - 1573