Gaussian field theory for the Brownian motion of a solvated particle

被引:2
|
作者
Speck, Thomas [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 2, D-40225 Dusseldorf, Germany
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 01期
关键词
MODEL;
D O I
10.1103/PhysRevE.88.014103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An alternative derivation of Brownian motion is presented. Instead of supplementing the linearized Navier-Stokes equations with a fluctuating force, we directly assume a Gaussian action functional for solvent velocity fluctuations. Solvating a particle amounts to expelling the solvent and prescribing a boundary condition to the solvent on the interface that is shared with the solute. We study the dynamical effects of this boundary condition on the solvent and derive explicit expressions for the solvent mean flow and velocity correlations. Moreover, we show that the probability to observe solvent velocity fluctuations that are compatible with the boundary condition reproduces random Brownian motion of the solvated particle. We explicitly calculate the translational and rotational diffusion coefficients of a spherical particle using the presented formalism.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] On Brownian motion of melting particle
    Ivanov, O. O.
    Golubiatnikov, A. N.
    CONFERENCE OF YOUNG SCIENTISTS IN MECHANICS, 2018, 1129
  • [22] BROWNIAN MOTION IN A FIELD OF FORCE AND THE DIFFUSION THEORY OF CHEMICAL REACTIONS
    BRINKMAN, HC
    PHYSICA, 1956, 22 (0U): : 29 - 34
  • [23] Radiation Emitted by a Charged Particle Undergoing Brownian Motion in a Magnetic Field
    Harko, Tiberiu
    Marcu, Alexandru
    Mocanu, Gabriela Raluca
    TIM15-16 PHYSICS CONFERENCE, 2017, 1796
  • [24] BROWNIAN-MOTION OF A HYDROSOL PARTICLE IN A COLLOIDAL FORCE-FIELD
    PRIEVE, DC
    LUO, F
    LANNI, F
    FARADAY DISCUSSIONS, 1987, 83 : 297 - 307
  • [25] THEORY OF BROWNIAN-MOTION .8. BROWNIAN PARTICLE IN A DILUTE GAS WITH INELASTIC-COLLISIONS
    MAZO, RM
    JOURNAL OF STATISTICAL PHYSICS, 1975, 12 (05) : 427 - 436
  • [26] PLANAR BROWNIAN MOTION AND GAUSSIAN MULTIPLICATIVE CHAOS
    Jego, Antoine
    ANNALS OF PROBABILITY, 2020, 48 (04): : 1597 - 1643
  • [27] Fractional Brownian motion and fractional Gaussian noise
    Qian, H
    PROCESSES WITH LONG-RANGE CORRELATIONS: THEORY AND APPLICATIONS, 2003, 621 : 22 - 33
  • [28] MOLECULAR THEORY OF BROWNIAN MOTION
    MAZUR, P
    OPPENHEIM, I
    PHYSICA, 1970, 50 (02): : 241 - +
  • [29] Theory of Hot Brownian Motion
    Rings, Daniel
    Selmke, Markus
    Cichos, Frank
    Kroy, Klaus
    SOFT MATTER, 2011, 7 (07) : 3441 - 3452
  • [30] BROWNIAN MOTION AND POTENTIAL THEORY
    HERSH, R
    GRIEGO, RJ
    SCIENTIFIC AMERICAN, 1969, 220 (03) : 67 - &