The Influence of Graphene Reinforced Electrospun Nano-Interlayers on Quasi-Static Indentation Behavior of Fiber-Reinforced Epoxy Composites

被引:21
作者
Goodarz, M. [1 ]
Bahrami, S. H. [1 ]
Sadighi, M. [2 ]
Saber-Samandari, S. [3 ]
机构
[1] Amirkabir Univ Technol, Text Engn Dept, Tehran 15914, Iran
[2] Amirkabir Univ Technol, Dept Mech Engn, Tehran 15914, Iran
[3] Amirkabir Univ Technol, New Technol Res Ctr, Tehran 15914, Iran
关键词
Polymer composites; Aramid; Graphene reinforced nanofibers; Interleaving; Indentation; INTERLAMINAR FRACTURE-TOUGHNESS; LOW-VELOCITY IMPACT; MODE-I; MECHANICAL-BEHAVIOR; THERMAL-PROPERTIES; NANOFIBERS; OXIDE; THICKNESS; DAMAGE; VEILS;
D O I
10.1007/s12221-017-6700-3
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
The aim of this research is to investigate the development and evaluation of hybrid multi-scale aramid/epoxy composites interleaved with electrospun graphene nanoplatelets/nylon 66 (GNPs/PA66) mats. The reinforced nanofiber mats were explored for their best mechanical properties and PA66 nanofibers with 1 wt% GNPs were selected for composite production. Quasi-static indentation tests were performed on both pristine and nanofiber-modified composites. The experimental results revealed that the introduction of reinforced interleaves within the interlaminar interfaces of composites promotes fracture toughness compared to pristine interleaves. It is shown that there is a particular interleaf thickness for optimum toughening effect of nanofibers. The optimum thicknesses for pristine and reinforced interleaves are 35 and 17.5 mu m, respectively.
引用
收藏
页码:322 / 333
页数:12
相关论文
共 49 条
  • [1] Abrate S., 2005, Impact on Composite Structures
  • [2] Effect of Nylon-66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates
    Akangah, Paul
    Lingaiah, Shivalingappa
    Shivakumar, Kunigal
    [J]. COMPOSITE STRUCTURES, 2010, 92 (06) : 1432 - 1439
  • [3] [Anonymous], 2012, 626412 ASTM INT
  • [4] Mechanical behavior of self-assembled carbon nanotube reinforced nylon 6,6 fibers
    Baji, Avinash
    Mai, Yiu-Wing
    Wong, Shing-Chung
    Abtahi, Mojtaba
    Du, Xusheng
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (09) : 1401 - 1409
  • [5] Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils
    Beckermann, Gareth W.
    Pickering, Kim L.
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 72 : 11 - 21
  • [6] Nanofibre bridging as a toughening mechanism in carbon/epoxy composite laminates interleaved with electrospun polyamide nanofibrous veils
    Daelemans, Lode
    van der Heijden, Sam
    De Baere, Ives
    Rahier, Hubert
    Van Paepegem, Wim
    De Clerck, Karen
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 117 : 244 - 256
  • [7] Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene
    Das, Sriya
    Wajid, Ahmed S.
    Bhattacharia, Sanjoy K.
    Wilting, Michael D.
    Rivero, Iris V.
    Green, Micah J.
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 128 (06) : 4040 - 4046
  • [8] De Avila Junior J., 2011, P 21 INT C MECH ENG
  • [9] Effect of electrospun polyamide 6 nanofibres on the mechanical properties of a glass fibre/epoxy composite
    De Schoenmaker, Bert
    Van der Heijden, Sam
    De Baere, Ives
    Van Paepegem, Wim
    De Clerck, Karen
    [J]. POLYMER TESTING, 2013, 32 (08) : 1495 - 1501
  • [10] Dzenis Y. A., 2001, USA, Patent No. [6265333, 6,265,333]