AN APPLICATION OF THE COALESCENCE THEORY TO BRANCHING RANDOM WALKS

被引:0
作者
Athreya, K. B. [1 ]
Hong, Jyy-I [2 ]
机构
[1] Iowa State Univ, Ames, IA 50011 USA
[2] Waldorf Coll, Dept Math, Forest City, IA 50436 USA
关键词
Branching process; branching random walk; coalescence; supercritical; infinite mean; CONVERGENCE; INFINITE;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In a discrete-time single-type Galton Watson branching random walk {Z(n), zeta(n)}(n >= 0), where Z(n) is the population of the nth generation and zeta(n) is a collection of the positions on R of the Z(n) individuals in the nth generation, let Y-n be the position of a randomly chosen individual from the nth generation and Z(n) (x) be the number of points zeta(n) that are less than or equal to x for x is an element of R. In this paper we show in the explosive case (i.e. m = E(Z(1)vertical bar Z(0) = 1) = infinity) when the offspring distribution is in the domain of attraction of a stable law of order alpha, 0 < alpha < 1, that the sequence of random functions {Z(n)(x)/Z(n) : -infinity < x < infinity} converges in the finite-dimensional sense to {delta(x) : -infinity < x < infinity}, where delta(x) 1({N <= x}) and N is an N(0,1) random variable.
引用
收藏
页码:893 / 899
页数:7
相关论文
共 8 条
[1]  
Asmussen S., 1976, Stochastic Processes & their Applications, V4, P1, DOI 10.1016/0304-4149(76)90022-3
[2]   Coalescence in the recent past in rapidly growing populations [J].
Athreya, K. B. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (11) :3757-3766
[3]  
Athreya KB, 2010, LEGACY OF ALLADI RAMAKRISHNAN IN THE MATHEMATICAL SCIENCES, P337, DOI 10.1007/978-1-4419-6263-8_20
[4]   THE CENTRAL-LIMIT-THEOREM FOR THE SUPERCRITICAL BRANCHING RANDOM-WALK, AND RELATED RESULTS [J].
BIGGINS, JD .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1990, 34 (02) :255-274
[5]   SIMPLE BRANCHING-PROCESS - NOTE ON CONVERGENCE WHEN MEAN IS INFINITE [J].
DAVIES, PL .
JOURNAL OF APPLIED PROBABILITY, 1978, 15 (03) :466-480
[6]  
Grey D.R., 1979, STOCH PROC APPL, V8, P257
[8]  
Kaplan N., 1976, Stochastic Processes & their Applications, V4, P15, DOI 10.1016/0304-4149(76)90023-5