COMPACTLY SUPPORTED SYMMETRIC C∞ WAVELETS WITH SPECTRAL APPROXIMATION ORDER

被引:23
作者
Han, Bin [1 ]
Shen, Zuowei [2 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
[2] Natl Univ Singapore, Dept Math, Singapore 117548, Singapore
基金
加拿大自然科学与工程研究理事会;
关键词
symmetric tight wavelet frames; spectral frame approximation order; symmetric orthonormal complex wavelets; nonstationary cascade algorithm; nonstationary C-infinity wavelets;
D O I
10.1137/060675009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain symmetric C-infinity real-valued tight wavelet frames in L-2(R) with compact support and the spectral frame approximation order. Furthermore, we present a family of symmetric compactly supported C-infinity orthonormal complex wavelets in L-2(R). A complete analysis of nonstationary tight wavelet frames and orthonormal wavelet bases in L-2(R) is given.
引用
收藏
页码:905 / 938
页数:34
相关论文
共 37 条
[1]   Restoration of chopped and nodded images by framelets [J].
Cai, Jian-Feng ;
Chan, Raymond ;
Shen, Lixin ;
Shen, Zuowei .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03) :1205-1227
[2]   A framelet-based image inpainting algorithm [J].
Cai, Jian-Feng ;
Chan, Raymond H. ;
Shen, Zuowei .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2008, 24 (02) :131-149
[3]   Deconvolution: a wavelet frame approach [J].
Chai, Anwei ;
Shen, Zuowei .
NUMERISCHE MATHEMATIK, 2007, 106 (04) :529-587
[4]   A framelet algorithm for enhancing video stills [J].
Chan, Raymond H. ;
Shen, Zuowei ;
Xia, Tao .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 23 (02) :153-170
[5]   Tight frame: an efficient way for high-resolution image reconstruction [J].
Chan, RH ;
Riemenschneider, SD ;
Shen, LX ;
Shen, ZW .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (01) :91-115
[6]   Compactly supported tight and sibling frames with maximum vanishing moments [J].
Chui, CK ;
He, WJ ;
Stöckler, J .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (03) :224-262
[7]   Nonstationary tight wavelet frames, II:: unbounded intervals [J].
Chui, CK ;
He, WJ ;
Stöckler, J .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2005, 18 (01) :25-66
[8]   Compactly supported tight frames associated with refinable functions [J].
Chui, CK ;
He, WJ .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (03) :293-319
[9]   Nonstationary subdivision schemes and multiresolution analysis [J].
Cohen, A ;
Dyn, N .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (06) :1745-1769
[10]  
COHEN A, 1994, WAVELET ANAL APPL, V5, P3