Liver fibrosis staging through a stepwise analysis of non-invasive markers (FibroSteps) in patients with chronic hepatitis C infection

被引:18
作者
El-Kamary, Samer S. [1 ,2 ,3 ]
Mohamed, Mona M. [4 ]
El-Raziky, Maissa [5 ]
Shardell, Michelle D. [1 ]
Shaker, Olfat G. [6 ]
ElAkel, Wafaa A. [5 ]
Esmat, Gamal [5 ]
机构
[1] Univ Maryland, Sch Med, Dept Epidemiol & Publ Hlth, Baltimore, MD 21201 USA
[2] Univ Maryland, Sch Med, Dept Pediat, Baltimore, MD 21201 USA
[3] Univ Maryland, Sch Med, Ctr Vaccine Dev, Baltimore, MD 21201 USA
[4] Cairo Univ, Dept Zool, Fac Sci, Giza, Egypt
[5] Cairo Univ, Endem Med & Hepatol Dept, Fac Med, Cairo, Egypt
[6] Cairo Univ, Dept Med Biochem & Mol Biol, Fac Med, Cairo, Egypt
关键词
chronic hepatitis; fibrosis markers; hepatitis C virus; liver fibrosis; logistic regression; TRANSIENT ELASTOGRAPHY; STIFFNESS MEASUREMENT; BIOCHEMICAL MARKERS; DIAGNOSTIC-ACCURACY; CLINICAL-USEFULNESS; TISSUE INHIBITOR; VIRUS-INFECTION; RISK-FACTORS; BIOPSY; REPRODUCIBILITY;
D O I
10.1111/liv.12139
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background: Non-invasive fibrosis markers can distinguish between liver fibrosis stages in lieu of liver biopsy or imaging elastography.Aims: To develop a sensitive, non-invasive, freely-available algorithm that differentiates between individual liver fibrosis stages in chronic hepatitis C virus (HCV) patients. Methods: Chronic HCV patients (n=355) at Cairo University Hospital, Egypt, with liver biopsy to determine fibrosis stage (METAVIR), were tested for preselected fibrosis markers. A novel multistage stepwise fibrosis classification algorithm (FibroSteps) was developed using random forest analysis for biomarker selection, and logistic regression for modelling. FibroSteps predicted fibrosis stage using four steps: Step 1 distinguished no(F0)/mild fibrosis(F1) vs. moderate(F2)/severe fibrosis(F3)/cirrhosis(F4); Step 2a distinguished F0 vs. F1; Step 2b distinguished F2 vs. F3/F4; and Step 3 distinguished F3 vs. F4. FibroSteps was developed using a randomly-selected training set (n=234) and evaluated using the remaining patients (n=118) as a validation set. Results: Hyaluronic Acid, TGF-1, 2-macroglobulin, MMP-2, Apolipoprotein-A1, Urea, MMP-1, alpha-fetoprotein, haptoglobin, RBCs, haemoglobin and TIMP-1 were selected into the models, which had areas under the receiver operating curve (AUC) of 0.973, 0.923 (Step 1); 0.943, 0.872 (Step 2a); 0.916, 0.883 (Step 2b) and 0.944, 0.946 (Step 3), in the training and validation sets respectively. The final classification had accuracies of 94.9% (95% CI: 91.3-97.4%) and 89.8% (95% CI: 82.9-94.6%) for the training and validation sets respectively. Conclusions: FibroSteps, a freely available, non-invasive liver fibrosis classification, is accurate and can assist clinicians in making prognostic and therapeutic decisions. The statistical code for FibroSteps using R software is provided in the supplementary materials.
引用
收藏
页码:982 / 990
页数:9
相关论文
共 45 条
[21]   Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease [J].
Fraquelli, Mirella ;
Rigamonti, Cristina ;
Casazza, Giovanni ;
Conte, Dario ;
Donato, Maria Francesca ;
Ronchi, Guido ;
Colombo, Massimo .
GUT, 2007, 56 (07) :968-973
[22]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67
[23]   Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury [J].
Friedman, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (04) :2247-2250
[24]   Accuracy of liver stiffness measurement for the diagnosis of cirrhosis in patients with chronic liver diseases [J].
Ganne-Carrie, Nathahe ;
Ziol, Marianne ;
de Ledinghen, Victor ;
Douvin, Catherine ;
Marcellin, Patrick ;
Castera, Laurent ;
Dhumeaux, Daniel ;
Trinchet, Jean-Claude ;
Beaugrand, Michel .
HEPATOLOGY, 2006, 44 (06) :1511-1517
[25]   Role of liver biopsy in management of chronic hepatitis C: A systematic review [J].
Gebo, KA ;
Herlong, HF ;
Torbenson, MS ;
Jenckes, MW ;
Chander, G ;
Ghanem, KG ;
El-Kamary, SS ;
Sulkowski, M ;
Bass, EB .
HEPATOLOGY, 2002, 36 (05) :S161-S172
[26]  
Halfon Philippe, 2005, Comp Hepatol, V4, P6, DOI 10.1186/1476-5926-4-6
[27]   Biochemical markers of liver fibrosis in patients with hepatitis C virus infection: a prospective study [J].
Imbert-Bismut, F ;
Ratziu, V ;
Pieroni, L ;
Charlotte, F ;
Benhamou, Y ;
Poynard, T .
LANCET, 2001, 357 (9262) :1069-1075
[28]   Assessment of Liver Fibrosis by Transient Elastography in Persons with Hepatitis C Virus Infection or HIV-Hepatitis C Virus Coinfection [J].
Kirk, Gregory D. ;
Astemborski, Jacquie ;
Mehta, Shruti H. ;
Spoler, Chuck ;
Fisher, Cedric ;
Allen, Danisha ;
Higgins, Yvonne ;
Moore, Richard D. ;
Afdhal, Nezem ;
Torbenson, Michael ;
Sulkowski, Mark ;
Thomas, David L. .
CLINICAL INFECTIOUS DISEASES, 2009, 48 (07) :963-972
[29]   Diagnostic accuracy, reproducibility and robustness of fibrosis blood tests in chronic hepatitis C: A meta-analysis with individual data [J].
Leroy, Vincent ;
Halfon, Philippe ;
Bacq, Yannick ;
Boursier, Jerome ;
Rousselet, Marie Christine ;
Bourliere, Marc ;
de Muret, Anne ;
Sturm, Nathalie ;
Hunault, Gilles ;
Penaranda, Guillaume ;
Brechot, Marie-Claude ;
Trocme, Candice ;
Cales, Paul .
CLINICAL BIOCHEMISTRY, 2008, 41 (16-17) :1368-1376
[30]   Diffusion-weighted magnetic resonance Imaging for the assessment of fibrosis in chronic hepatitis C [J].
Lewin, Maite ;
Poujol-Robert, Armelle ;
Boeelle, Pierre-Yves ;
Wendum, Dominique ;
Lasnier, Elisabeth ;
Viallon, Magalie ;
Guechot, Jerome ;
Hoeffel, Christine ;
Arrive, Lionel ;
Tubiana, Jean-Michel ;
Poupon, Raoul .
HEPATOLOGY, 2007, 46 (03) :658-665