Unsupervised Spatiotemporal Analysis of FMRI Data Using Graph-Based Visualizations of Self-Organizing Maps

被引:15
|
作者
Katwal, Santosh B. [1 ,2 ]
Gore, John C. [2 ,3 ]
Marois, Rene [4 ]
Rogers, Baxter P. [2 ,3 ]
机构
[1] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37212 USA
[2] Vanderbilt Univ, Inst Imaging Sci VUIIS, Nashville, TN 37212 USA
[3] Vanderbilt Univ, Dept Biomed Engn Radiol & Radiol Sci, Nashville, TN 37212 USA
[4] Vanderbilt Univ, Dept Psychol, Nashville, TN 37212 USA
基金
美国国家卫生研究院;
关键词
Functional MRI (fMRI); SOM visualization; reaction time; self-organizing map; INDEPENDENT COMPONENT ANALYSIS; BOLD HEMODYNAMIC-RESPONSES; FUNCTIONAL MRI; DATA PROJECTION; NEURAL-NETWORK; TIME-SERIES; BRAIN; MODEL; CONNECTIVITY;
D O I
10.1109/TBME.2013.2258344
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.
引用
收藏
页码:2472 / 2483
页数:12
相关论文
共 50 条
  • [21] Analysis of Distracted Driver Behaviour Using Self-Organizing Maps
    Samson, Matthew Immanuel
    Calvert, David A.
    Trick, Lana M.
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 101 - 103
  • [22] Analysis of professional trajectories using disconnected self-organizing maps
    Come, Etienne
    Cottrell, Marie
    Gaubert, Patrice
    NEUROCOMPUTING, 2015, 147 : 185 - 196
  • [23] Ligand Based Virtual Screening Using Self-organizing Maps
    P. B. Jayaraj
    S. Sanjay
    Koustub Raja
    G. Gopakumar
    U. C. Jaleel
    The Protein Journal, 2022, 41 : 44 - 54
  • [24] On Selection of Intraocular Power Formula Based on Data Classification Using Self-organizing Maps
    Kamiura, Naotake
    Takehara, Nariaki
    Saitoh, Ayumu
    Isokawa, Teijiro
    Matsui, Nobuyuki
    Tabuchi, Hitoshi
    IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,
  • [25] Ligand Based Virtual Screening Using Self-organizing Maps
    Jayaraj, P. B.
    Sanjay, S.
    Raja, Koustub
    Gopakumar, G.
    Jaleel, U. C.
    PROTEIN JOURNAL, 2022, 41 (01) : 44 - 54
  • [26] Self-organizing maps for learning the edit costs in graph matching
    Neuhaus, M
    Bunke, H
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2005, 35 (03): : 503 - 514
  • [27] FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data
    Van Gassen, Sofie
    Callebaut, Britt
    Van Helden, Mary J.
    Lambrecht, Bart N.
    Demeester, Piet
    Dhaene, Tom
    Saeys, Yvan
    CYTOMETRY PART A, 2015, 87A (07) : 636 - 645
  • [28] A new approach for data clustering and visualization using self-organizing maps
    Shieh, Shu-Ling
    Liao, I-En
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (15) : 11924 - 11933
  • [29] Color clustering using self-organizing maps
    Zhang, Xiao-Yu
    Chen, Jiu-Sheng
    Dong, Jian-Kang
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 986 - +
  • [30] A Causal Model Using Self-Organizing Maps
    Chung, Younjin
    Takatsuka, Masahiro
    NEURAL INFORMATION PROCESSING, PT II, 2015, 9490 : 591 - 600