Controlled synthesis of CuInS2, Cu2SnS3 and Cu2ZnSnS4 nano-structures: insight into the universal phase-selectivity mechanism

被引:114
作者
Chang, Jin [1 ]
Waclawik, Eric R. [1 ]
机构
[1] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4000, Australia
关键词
SHAPE CONTROL; NANOCRYSTALS; SEMICONDUCTOR;
D O I
10.1039/c3ce40284c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Well-shaped CuInS2 nanopyramids and nanodisks were synthesized by a wet-chemical method. The phase structure was controlled by the coordination strength between solvent and metal precursors. Zincblende CuInS2 structure was obtained when copper iodide, indium acetate and 1-dodecanethiol were heated at 220 degrees C in 1-octadecene (ODE) or oleic acid (OA). When the solvent was replaced by oleylamine (OLA) or trioctylphosphine oxide (TOPO), the thermodynamically metastable wurtzite phase was obtained. Interestingly, zincblende phase can also be synthesized in OLA solvent by injecting 1-dodecanethiol into the reaction solution at 315 degrees C. It was demonstrated that the CuInS2 phase structure selectivity was determined at the initial formation step of a CuIn(SR)(x) intermediate. An intermediate with high crystallinity will give metastable wurtzite CuInS2 structure, while a low crystallinity intermediate transforms into zincblende CuInS2 phase. This understanding of the crystal formation mechanism enabled us to extend the same synthetic method to another two attractive nanomaterials, Cu2SnS3 and Cu2ZnSnS4. In this work, Cu2SnS3 and Cu2ZnSnS4 nanocrystals with zincblende or wurtzite structures were readily synthesized using similar reaction conditions to CuInS2 nanocrystals.
引用
收藏
页码:5612 / 5619
页数:8
相关论文
共 39 条
[1]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[2]   Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2 -: art. no. 075203 [J].
Alonso, MI ;
Wakita, K ;
Pascual, J ;
Garriga, M ;
Yamamoto, N .
PHYSICAL REVIEW B, 2001, 63 (07)
[3]   Facile thermolysis synthesis of CuInS2 nanocrystals with tunable anisotropic shape and structure [J].
Bao, Ningzhong ;
Qiu, Xinmin ;
Wang, Yu-Hsiang A. ;
Zhou, Ziyou ;
Lu, Xiaohua ;
Grimes, Craig A. ;
Gupta, Arunava .
CHEMICAL COMMUNICATIONS, 2011, 47 (33) :9441-9443
[4]   Phase-Selective Synthesis of CuInS2 Nanocrystals [J].
Batabyal, Sudip K. ;
Tian, Lu ;
Venkatram, N. ;
Ji, Wei ;
Vittal, Jagadese J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (33) :15037-15042
[5]   Facet-controlled self-assembly of ZnO nanocrystals by non-hydrolytic aminolysis and their photodegradation activities [J].
Chang, Jin ;
Waclawik, Eric R. .
CRYSTENGCOMM, 2012, 14 (11) :4041-4048
[6]   One-pot synthesis of copper-indium sulfide nanocrystal heterostructures with acorn, bottle, and larva shapes [J].
Choi, SH ;
Kim, EG ;
Hyeon, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (08) :2520-2521
[7]   Phase Transformation of Biphasic Cu2S-CuInS2 to Monophasic CuInS2 Nanorods [J].
Connor, Stephen T. ;
Hsu, Ching-Mei ;
Weil, Benjamin D. ;
Aloni, Shaul ;
Cui, Yi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (13) :4962-4966
[8]   Thin-film solar cells: review of materials, technologies and commercial status [J].
Green, Martin A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2007, 18 (Suppl 1) :S15-S19
[9]   Synthesis and shape-tailoring of copper sulfide/indium sulfide-based nanocrystals [J].
Han, Wei ;
Yi, Luoxin ;
Zhao, Nan ;
Tang, Aiwei ;
Gao, Mingyuan ;
Tang, Zhiyong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (39) :13152-13161
[10]   Semiconductor Nanocrystal Quantum Dots as Solar Cell Components and Photosensitizers: Material, Charge Transfer, and Separation Aspects of Some Device Topologies [J].
Hetsch, Frederik ;
Xu, Xueqing ;
Wang, Hongkang ;
Kershaw, Stephen V. ;
Rogach, Andrey L. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (15) :1879-1887