Control of synaptic strength by glial TNFα

被引:1051
作者
Beattie, EC
Stellwagen, D
Morishita, W
Bresnahan, JC
Ha, BK
Von Zastrow, M
Beattie, MS [1 ]
Malenka, RC
机构
[1] Ohio State Univ, Med Ctr, Dept Neurosci, Columbus, OH 43210 USA
[2] Stanford Univ, Sch Med, Dept Psychiat & Behav Sci, Nancy Pritzker Lab, Palo Alto, CA 94304 USA
[3] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
关键词
D O I
10.1126/science.1067859
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Activity-dependent modulation of synaptic efficacy in the brain contributes to neural circuit development and experience-dependent plasticity. Although glia are affected by activity and ensheathe synapses, their influence on synaptic strength has largely been ignored. Here, we show that a protein produced by glia, tumor necrosis factor alpha (TNFalpha), enhances synaptic efficacy by increasing surface expression of AMPA receptors. Preventing the actions of endogenous TNFalpha has the opposite effects. Thus, the continual presence of TNFalpha is required for preservation of synaptic strength at excitatory synapses. Through its effects on AMPA receptor trafficking, TNFalpha may play roles in synaptic plasticity and modulating responses to neural injury.
引用
收藏
页码:2282 / 2285
页数:4
相关论文
共 23 条
  • [21] Control of synapse number by glia
    Ullian, EM
    Sapperstein, SK
    Christopherson, KS
    Barres, BA
    [J]. SCIENCE, 2001, 291 (5504) : 657 - 661
  • [22] Three-dimensional relationships between hippocampal synapses and astrocytes
    Ventura, R
    Harris, KM
    [J]. JOURNAL OF NEUROSCIENCE, 1999, 19 (16) : 6897 - 6906
  • [23] ZUCKER RS, 1989, ANNU REV NEUROSCI, V12, P13, DOI 10.1146/annurev.neuro.12.1.13