Comparison between methods of analytical continuation for bosonic functions

被引:15
作者
Schott, J. [1 ]
van Loon, E. G. C. P. [2 ]
Locht, I. L. M. [1 ,2 ]
Katsnelson, M. I. [2 ]
Di Marco, I. [1 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[2] Radboud Univ Nijmegen, Inst Mol & Mat, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
基金
瑞典研究理事会;
关键词
QUANTUM MONTE-CARLO; MAXIMUM-ENTROPY; SPATIAL CORRELATIONS; HUBBARD; SYSTEMS;
D O I
10.1103/PhysRevB.94.245140
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we perform a critical assessment of different known methods for the analytical continuation of bosonic functions, namely, the maximum entropy method, the non-negative least-squares method, the non-negative Tikhonov method, the Pade approximant method, and a stochastic sampling method. Four functions of different shape are investigated, corresponding to four physically relevant scenarios. They include a simple two-pole model function; two flavors of the tight-binding model on a square lattice, i.e., a single-orbital metallic system and a two-orbital insulating system; and the Hubbard dimer. The effect of numerical noise in the input data on the analytical continuation is discussed in detail. Overall, the stochastic method by A. S. Mishchenko et al. [Phys. Rev. B 62, 6317 (2000)] is shown to be the most reliable tool for input data whose numerical precision is not known. For high-precision input data, this approach is slightly outperformed by the Pade approximant method, which combines a good-resolution power with a good numerical stability. Although none of the methods retrieves all features in the spectra in the presence of noise, our analysis provides a useful guideline for obtaining reliable information of the spectral function in cases of practical interest.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bosonic Nevanlinna Analytic Continuation
    Nogaki, Kosuke
    Shinaoka, Hiroshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2023, 92 (03)
  • [2] Analytical continuation of matrix-valued functions: Caratheodory formalism
    Fei, Jiani
    Yeh, Chia-Nan
    Zgid, Dominika
    Gull, Emanuel
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [3] Analytical continuation of imaginary axis data for optical conductivity
    Gunnarsson, O.
    Haverkort, M. W.
    Sangiovanni, G.
    PHYSICAL REVIEW B, 2010, 82 (16):
  • [4] Continued functions and critical exponents: tools for analytical continuation of divergent expressions in phase transition studies
    Abhignan, Venkat
    Sankaranarayanan, R.
    EUROPEAN PHYSICAL JOURNAL B, 2023, 96 (03)
  • [5] Comparison of Two PV modules Technologies Using Analytical and Experimental Methods
    Kessaissia, F. Z.
    Zegaoui, A.
    Arab, A. Hadj
    Loukarfi, L.
    Aillerie, M.
    INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY -TMREES15, 2015, 74 : 389 - 397
  • [6] Maximum entropy formalism for the analytic continuation of matrix-valued Green's functions
    Kraberger, Gernot J.
    Triebl, Robert
    Zingl, Manuel
    Aichhorn, Markus
    PHYSICAL REVIEW B, 2017, 96 (15)
  • [7] Reconstructing lattice QCD spectral functions with stochastic pole expansion and Nevanlinna analytic continuation
    Huang, Li
    Liang, Shuang
    PHYSICAL REVIEW D, 2024, 109 (05)
  • [8] Modified HPMs Inspired by Homotopy Continuation Methods
    Vazquez-Leal, Hector
    Filobello-Nino, Uriel
    Castaneda-Sheissa, Roberto
    Hernandez-Martinez, Luis
    Sarmiento-Reyes, Arturo
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [9] Bayesian parametric analytic continuation of Green's functions
    Rumetshofer, Michael
    Bauernfeind, Daniel
    von der Linden, Wolfgang
    PHYSICAL REVIEW B, 2019, 100 (07)
  • [10] Analytical continuation of imaginary axis data using maximum entropy
    Gunnarsson, O.
    Haverkort, M. W.
    Sangiovanni, G.
    PHYSICAL REVIEW B, 2010, 81 (15):