Sampling theorems for signals periodic in the linear canonical transform domain

被引:30
作者
Xiao, Li
Sun, Wenchang [1 ]
机构
[1] Nankai Univ, Dept Math, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear canonical transforms; Bandlimited periodic signals; Sampling and reconstruction; BAND-LIMITED SIGNALS; FRACTIONAL FOURIER-TRANSFORM; COMPUTATION; FRESNEL;
D O I
10.1016/j.optcom.2012.10.040
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In [E. Margolis, Y.C. Eldar, IEEE Trans. Signal Process. 56 (2008) 2728-2745], the authors derived a practical reconstruction formula for bandlimited periodic signals. It was shown that every bandlimited periodic signal can be perfectly reconstructed from finitely many nonuniformly spaced samples taken over a period. In this paper, we generalize this result in a broader sense. We obtain a similar reconstruction formula for a large class of signals, whose linear canonical transforms are bandlimited periodic functions. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:14 / 18
页数:5
相关论文
共 27 条
[1]  
[Anonymous], 2000, FRACTIONAL FOURIER T
[2]   Optimal filtering with linear canonical transformations [J].
Barshan, B ;
Kutay, MA ;
Ozaktas, HM .
OPTICS COMMUNICATIONS, 1997, 135 (1-3) :32-36
[3]   ABCD matrix formalism of fractional Fourier optics [J].
Bernardo, LM .
OPTICAL ENGINEERING, 1996, 35 (03) :732-740
[4]   Unified fractional Fourier transform and sampling theorem [J].
Erseghe, T ;
Kraniauskas, P ;
Cariolaro, G .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) :3419-3423
[5]   Noninterferometric phase retrieval using a fractional Fourier system [J].
Gopinathan, Unnikrishnan ;
Situ, Guohai ;
Naughton, Thomas J. ;
Sheridan, John T. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (01) :108-115
[6]  
Gradshtein I., 1965, TABLE INTEGRALS SERI
[7]   Sampling and discretization of the linear canonical transform [J].
Healy, John J. ;
Sheridan, John T. .
SIGNAL PROCESSING, 2009, 89 (04) :641-648
[8]   Additional sampling criterion for the linear canonical transform [J].
Healy, John J. ;
Hennelly, Bryan M. ;
Sheridan, John T. .
OPTICS LETTERS, 2008, 33 (22) :2599-2601
[9]   Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms [J].
Hennelly, BM ;
Sheridan, JT .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2005, 22 (05) :917-927
[10]   The generalized Fresnel transform and its application to optics [J].
James, DFV ;
Agarwal, GS .
OPTICS COMMUNICATIONS, 1996, 126 (4-6) :207-212