Galerkin projected residual method applied to diffusion-reaction problems

被引:3
作者
Dutra do Carmo, Eduardo Gomes [1 ]
Alvarez, Gustavo Benitez [2 ]
Rochinha, Fernando Alves [1 ]
Dourado Loula, Abimael Fernando [3 ]
机构
[1] Univ Fed Rio de Janeiro, Ilha Fundao, COPPE, BR-21945970 Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, UFF EEIMVR, BR-27225125 Volta Redonda, RJ, Brazil
[3] Lab Nacl Comp Cient, LNCC, BR-25651070 Petropolis, RJ, Brazil
关键词
Stabilization; GLS; GPR; Diffusion-reaction equation; Finite element method; Second-order boundary value problems;
D O I
10.1016/j.cma.2008.05.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A stabilized finite element method is presented for scalar and linear second-order boundary value problems. The method is obtained by adding to the Galerkin formulation multiple projections of the residual of the differential equation at element level. These multiple projections allow the generation of appropriate number of free stabilization parameters in the element matrix depending on the local space of approximation and on the differential operator. The free parameters can be determined imposing some convergence and/or stability criteria or by postulating the element matrix with the desired stability properties. The element matrix of most stabilized methods (such as, GLS and GGLS methods) can be obtained using this new method with appropriate choices of the stabilization parameters. We applied this formulation to diffusion-reaction problems. Optimal rates of convergency are numerically observed for regular solutions. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4559 / 4570
页数:12
相关论文
共 50 条
  • [41] HIGH ORDER GALERKIN METHODS WITH GRADED MESHES FOR TWO-DIMENSIONAL REACTION-DIFFUSION PROBLEMS
    Li, Zhiwen
    Wu, Bin
    Xu, Yuesheng
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (03) : 319 - 343
  • [42] Analysis of space-time discontinuous Galerkin method for nonlinear convection-diffusion problems
    Feistauer, Miloslav
    Kucera, Vaclav
    Najzar, Karel
    Prokopova, Jaroslava
    [J]. NUMERISCHE MATHEMATIK, 2011, 117 (02) : 251 - 288
  • [43] Uniform supercloseness of Galerkin finite element method for convection-diffusion problems with characteristic layers
    Liu, Xiaowei
    Zhang, Jin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (02) : 444 - 458
  • [44] A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems
    Egger, Herbert
    Schoeberl, Joachim
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (04) : 1206 - 1234
  • [45] A DISCONTINUOUS GALERKIN METHOD FOR ONE-DIMENSIONAL TIME-DEPENDENT NONLOCAL DIFFUSION PROBLEMS
    Du, Qiang
    Ju, Lili
    Lu, Jianfang
    [J]. MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 123 - 147
  • [46] A parameter-free dynamic diffusion method for advection-diffusion-reaction problems
    Valli, Andrea M. P.
    Almeida, Regina C.
    Santos, Isaac P.
    Catabriga, Lucia
    Malta, Sandra M. C.
    Coutinho, Alvaro L. G. A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (01) : 307 - 321
  • [47] Local discontinuous Galerkin method for a hidden-memory variable order reaction–diffusion equation
    Leilei Wei
    Huanhuan Wang
    Yanping Chen
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 2857 - 2872
  • [48] A Hybridisable Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion-Reaction Equations
    Pi, Wei
    Han, Yihui
    Zhang, Shiquan
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (03) : 455 - 484
  • [49] A diffusion-reaction computational study to reveal the depolymerization mechanisms of epoxy composites for recycling
    Luo, C.
    Chung, C.
    Yu, K.
    [J]. MATERIALS TODAY SUSTAINABILITY, 2023, 23
  • [50] Local tangential lifting virtual element method for the diffusion-reaction equation on the non-flat Voronoi discretized surface
    Li, Jingwei
    Feng, Xinlong
    He, Yinnian
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (06) : 5297 - 5307