Galerkin projected residual method applied to diffusion-reaction problems

被引:3
|
作者
Dutra do Carmo, Eduardo Gomes [1 ]
Alvarez, Gustavo Benitez [2 ]
Rochinha, Fernando Alves [1 ]
Dourado Loula, Abimael Fernando [3 ]
机构
[1] Univ Fed Rio de Janeiro, Ilha Fundao, COPPE, BR-21945970 Rio De Janeiro, Brazil
[2] Univ Fed Fluminense, UFF EEIMVR, BR-27225125 Volta Redonda, RJ, Brazil
[3] Lab Nacl Comp Cient, LNCC, BR-25651070 Petropolis, RJ, Brazil
关键词
Stabilization; GLS; GPR; Diffusion-reaction equation; Finite element method; Second-order boundary value problems;
D O I
10.1016/j.cma.2008.05.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A stabilized finite element method is presented for scalar and linear second-order boundary value problems. The method is obtained by adding to the Galerkin formulation multiple projections of the residual of the differential equation at element level. These multiple projections allow the generation of appropriate number of free stabilization parameters in the element matrix depending on the local space of approximation and on the differential operator. The free parameters can be determined imposing some convergence and/or stability criteria or by postulating the element matrix with the desired stability properties. The element matrix of most stabilized methods (such as, GLS and GGLS methods) can be obtained using this new method with appropriate choices of the stabilization parameters. We applied this formulation to diffusion-reaction problems. Optimal rates of convergency are numerically observed for regular solutions. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4559 / 4570
页数:12
相关论文
共 50 条
  • [21] Numerical solution of fractional diffusion-reaction problems based on BURA
    Harizanov, Stanislav
    Lazarov, Raytcho
    Margenov, Svetozar
    Marinov, Pencho
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (02) : 316 - 331
  • [22] GALERKIN METHOD APPLIED TO CONVECTIVE INSTABILITY PROBLEMS
    FINLAYSON, BA
    JOURNAL OF FLUID MECHANICS, 1968, 33 : 201 - +
  • [23] A Petrov-Galerkin transformation that eliminates spurious oscillations for heterogeneous diffusion-reaction equations
    Zohdi, TI
    Wriggers, P
    COMPUTATIONAL MATERIALS SCIENCE, 2001, 21 (02) : 255 - 260
  • [24] COMPUTATIONALLY EFFICIENT GALERKIN TECHNIQUE FOR APPROXIMATING TRANSIENT DIFFUSION-REACTION EQUATIONS IN COMPOSITE MEDIA
    CAVENDISH, JC
    OH, SH
    CHEMICAL ENGINEERING JOURNAL AND THE BIOCHEMICAL ENGINEERING JOURNAL, 1979, 17 (01): : 41 - 54
  • [25] Galerkin Solution of Stochastic Reaction-Diffusion Problems
    Avila da Silva, C. R., Jr.
    Beck, Andre Teofilo
    Franco, Admilson T.
    de Suarez, Oscar A.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2013, 135 (07):
  • [26] CONTINUATION OF GALERKIN APPROXIMATIONS FOR REACTION-DIFFUSION PROBLEMS
    JOLY, G
    KERNEVEZ, JP
    SHARAN, M
    ACTA APPLICANDAE MATHEMATICAE, 1983, 1 (03) : 263 - 279
  • [27] Diffusion-reaction: Growth and nucleation
    dHeurle, FM
    Gas, P
    Philibert, J
    DEFECT AND DIFFUSION FORUM, 1997, 143 : 529 - 539
  • [28] An A Posteriori Error Estimate for the Local Discontinuous Galerkin Method Applied to Linear and Nonlinear Diffusion Problems
    Rommel Bustinza
    Gabriel N. Gatica
    Bernardo Cockburn
    Journal of Scientific Computing, 2005, 22-23 : 147 - 185
  • [29] Numerical algorithms for diffusion-reaction problems with non-classical conditions
    Martin-Vaquero, J.
    Queiruga-Dios, A.
    Encinas, A. H.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5487 - 5495
  • [30] A nearly optimal Galerkin projected residual finite element method for Helmholtz problem
    Dutra do Carmo, Eduardo Gomes
    Alvarez, Gustavo Benitez
    Dourado Loula, Abimael Fernando
    Rochinha, Fernando Alves
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (13-16) : 1362 - 1375