Hollow Multi-Shelled Structures of Co3O4 Dodecahedron with Unique Crystal Orientation for Enhanced Photocatalytic CO2 Reduction

被引:359
作者
Wang, Li [1 ,2 ]
Wan, Jiawei [2 ]
Zhao, Yasong [1 ,2 ]
Yang, Nailiang [2 ,3 ]
Wang, Dan [1 ,2 ,3 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Heilongjiang, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Biochem Engn, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
MICROSPHERES; PERFORMANCE; CAPACITY; SPHERES; FACETS; DRIVEN; ANODES;
D O I
10.1021/jacs.8b13528
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structure and facet control are considered to be effective routes to enhance catalytic performance. We successfully synthesized hollow multi-shelled structures (HoMSs) of a Co3O4 dodecahedron by adopting metal-organic frameworks (MOFs) as templates and using the sequential templating approach (STA). Importantly, owing to the topological arrangement of metal atoms in MOFs, the Co3O4 nanocrystals in HoMSs are assembled in the desired orientation, forming a unique shell with dominant exposure of (111) facets. This process is defined as "genetic inheritance" in this work. In addition, these exposed facets possess high activity for photocatalytic CO2 reduction. Adding this to the properties inherited from HoMSs, i.e., multiple interfaces and strong solar light harvesting, these Co3O4 HoMSs present high catalytic activity for CO2 photoreduction. The catalytic activity of quadruple-shelled (QS) Co3O4 HoMSs was about 5 and 3 times higher than that of Co3O4 nanoparticles and Co3O4 HoMSs without facet control, respectively.
引用
收藏
页码:2238 / 2241
页数:4
相关论文
共 34 条
[1]   Ternary silver chlorobromide nanocrystals: intrinsic influence of size and morphology on photocatalytic activity [J].
Abeyweera, Sasitha C. ;
Sun, Yugang .
MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (08) :1534-1540
[2]  
[Anonymous], 2016, ANGEW CHEM
[3]  
[Anonymous], 2013, ANGEW CHEM INT EDIT, DOI DOI 10.1002/ANGE.201301622
[4]   High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J].
Banerjee, Rahul ;
Phan, Anh ;
Wang, Bo ;
Knobler, Carolyn ;
Furukawa, Hiroyasu ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2008, 319 (5865) :939-943
[5]   Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell [J].
Barton, Emily E. ;
Rampulla, David M. ;
Bocarsly, Andrew B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (20) :6342-+
[6]   Catalytic performance of MgO with different exposed crystal facets towards the ozonation of 4-chlorophenol [J].
Chen, Jun ;
Tian, Shuanghong ;
Lu, Jiang ;
Xiong, Ya .
APPLIED CATALYSIS A-GENERAL, 2015, 506 :118-125
[7]   Synthesis of multi-shelled MnO2 hollow microspheres via an anion-adsorption process of hydrothermal intensification [J].
Chen, Mengjie ;
Wang, Jiangyan ;
Tang, Hongjie ;
Yang, Yu ;
Wang, Bao ;
Zhao, Huijun ;
Wang, Dan .
INORGANIC CHEMISTRY FRONTIERS, 2016, 3 (08) :1065-1070
[8]   Co3O4 Hexagonal Platelets with Controllable Facets Enabling Highly Efficient Visible-Light Photocatalytic Reduction of CO2 [J].
Gao, Chao ;
Meng, Qiangqiang ;
Zhao, Kun ;
Yin, Huajie ;
Wang, Dawei ;
Guo, Jun ;
Zhao, Shenlong ;
Chang, Lin ;
He, Meng ;
Li, Qunxiang ;
Zhao, Huijun ;
Huang, Xingjiu ;
Gao, Yan ;
Tang, Zhiyong .
ADVANCED MATERIALS, 2016, 28 (30) :6485-+
[9]   General Synthesis of Homogeneous Hollow Core-Shell Ferrite Microspheres [J].
Li, Zhenmin ;
Lai, Xiaoyong ;
Wang, Hong ;
Mao, Dan ;
Xing, Chaojian ;
Wang, Dan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (07) :2792-2797
[10]   Tunable Photocatalytic Selectivity of Hollow TiO2 Microspheres Composed of Anatase Polyhedra with Exposed {001} Facets [J].
Liu, Shengwei ;
Yu, Jiaguo ;
Jaroniec, Mietek .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (34) :11914-11916