LYRA, a webserver for lymphocyte receptor structural modeling

被引:56
|
作者
Klausen, Michael Schantz [1 ]
Anderson, Mads Valdemar [1 ]
Jespersen, Martin Closter [1 ]
Nielsen, Morten [1 ,2 ]
Marcatili, Paolo [1 ]
机构
[1] Tech Univ Denmark, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark
[2] Univ Nacl San Martin, Inst Invest Biotecnol, Buenos Aires, DF, Argentina
基金
美国国家卫生研究院;
关键词
CANONICAL STRUCTURES; T-CELLS; ANTIBODIES IMPLICATIONS; HYPERVARIABLE REGIONS; PREDICTION; IMMUNOGLOBULIN; CLASSIFICATION; CONFORMATIONS; IMPROVEMENTS; DATABASE;
D O I
10.1093/nar/gkv535
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA is based on the canonical structure method, that in the last 30 years has been successfully used to generate antibody models of high accuracy, and in our benchmarks this approach proves to achieve similarly good results on TCR modeling, with a benchmarked average RMSD accuracy of 1.29 and 1.48 angstrom for B- and T-cell receptors, respectively. To the best of our knowledge, LYRA is the first automated server for the prediction of TCR structure.
引用
收藏
页码:W349 / W355
页数:7
相关论文
共 50 条
  • [41] Epigenetic aspects of lymphocyte antigen receptor gene rearrangement or 'when stochasticity completes randomness'
    Jaeger, Sebastien
    Fernandez, Bastien
    Ferrier, Pierre
    IMMUNOLOGY, 2013, 139 (02) : 141 - 150
  • [42] Structural basis of receptor sharing by interleukin 17 cytokines
    Ely, Lauren K.
    Fischer, Suzanne
    Garcia, K. Christopher
    NATURE IMMUNOLOGY, 2009, 10 (12) : 1245 - U3
  • [44] Challenges in structural modeling of RNA-protein interactions
    Liu, Xudong
    Duan, Yingtian
    Hong, Xu
    Xie, Juan
    Liu, Shiyong
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 81
  • [45] A Novel Strategy of Structural Similarity Based Consensus Modeling
    Lei, Beilei
    Li, Jiazhong
    Yao, Xiaojun
    MOLECULAR INFORMATICS, 2013, 32 (07) : 599 - 608
  • [46] Modeling of acute toxicity by using topological and structural parameters
    Shaik, Basheerulla
    Singh, Jyoti
    Ahmad, Izhar
    Singh, Dadan Prasad
    Singh, Satyendra
    Singh, Neelu
    Agrawal, Vijay K.
    JOURNAL OF THE INDIAN CHEMICAL SOCIETY, 2012, 89 (10) : 1375 - 1386
  • [47] Integrative Classification Using Structural Equation Modeling of Homeostasis
    Fang, Hong-Bin
    Huang, Hengzhen
    Yuan, Ao
    Fan, Ruzong
    Tan, Ming T.
    STATISTICS IN BIOSCIENCES, 2024, 16 (03) : 742 - 760
  • [48] Physical and Computational Modeling for Transcatheter Structural Heart Interventions
    Faza, Nadeen N.
    Harb, Serge C.
    Wang, Dee Dee
    van den Dorpel, Mark M. P.
    Van Mieghem, Nicolas
    Little, Stephen H.
    JACC-CARDIOVASCULAR IMAGING, 2023, 17 (04) : 428 - 440
  • [49] Structural modeling of TAL effector-DNA interactions
    Bradley, Philip
    PROTEIN SCIENCE, 2012, 21 (04) : 471 - 474
  • [50] Low-resolution structural modeling of protein interactome
    Vakser, Ilya A.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2013, 23 (02) : 198 - 205