LYRA, a webserver for lymphocyte receptor structural modeling

被引:56
|
作者
Klausen, Michael Schantz [1 ]
Anderson, Mads Valdemar [1 ]
Jespersen, Martin Closter [1 ]
Nielsen, Morten [1 ,2 ]
Marcatili, Paolo [1 ]
机构
[1] Tech Univ Denmark, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark
[2] Univ Nacl San Martin, Inst Invest Biotecnol, Buenos Aires, DF, Argentina
基金
美国国家卫生研究院;
关键词
CANONICAL STRUCTURES; T-CELLS; ANTIBODIES IMPLICATIONS; HYPERVARIABLE REGIONS; PREDICTION; IMMUNOGLOBULIN; CLASSIFICATION; CONFORMATIONS; IMPROVEMENTS; DATABASE;
D O I
10.1093/nar/gkv535
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The accurate structural modeling of B- and T-cell receptors is fundamental to gain a detailed insight in the mechanisms underlying immunity and in developing new drugs and therapies. The LYRA (LYmphocyte Receptor Automated modeling) web server (http://www.cbs.dtu.dk/services/LYRA/) implements a complete and automated method for building of B- and T-cell receptor structural models starting from their amino acid sequence alone. The webserver is freely available and easy to use for non-specialists. Upon submission, LYRA automatically generates alignments using ad hoc profiles, predicts the structural class of each hypervariable loop, selects the best templates in an automatic fashion, and provides within minutes a complete 3D model that can be downloaded or inspected online. Experienced users can manually select or exclude template structures according to case specific information. LYRA is based on the canonical structure method, that in the last 30 years has been successfully used to generate antibody models of high accuracy, and in our benchmarks this approach proves to achieve similarly good results on TCR modeling, with a benchmarked average RMSD accuracy of 1.29 and 1.48 angstrom for B- and T-cell receptors, respectively. To the best of our knowledge, LYRA is the first automated server for the prediction of TCR structure.
引用
收藏
页码:W349 / W355
页数:7
相关论文
共 50 条
  • [1] InsectOR-Webserver for sensitive identification of insect olfactory receptor genes from non-model genomes
    Karpe, Snehal Dilip
    Tiwari, Vikas
    Ramanathan, Sowdhamini
    PLOS ONE, 2021, 16 (01):
  • [2] STCRDab: the structural T-cell receptor database
    Leem, Jinwoo
    de Oliveira, Saulo H. P.
    Krawczyk, Konrad
    Deane, Charlotte M.
    NUCLEIC ACIDS RESEARCH, 2018, 46 (D1) : D406 - D412
  • [3] Modeling lymphocyte homing and encounters in lymph nodes
    Baldazzi, Valentina
    Paci, Paola
    Bernaschi, Massimo
    Castiglione, Filippo
    BMC BIOINFORMATICS, 2009, 10
  • [4] Identification of a third variable lymphocyte receptor in the lamprey
    Kasamatsu, Jun
    Sutoh, Yoichi
    Fugo, Kazunori
    Otsuka, Noriyuki
    Iwabuchi, Kazuya
    Kasahara, Masanori
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (32) : 14304 - 14308
  • [5] Review: Proteins with repeated sequence - Structural prediction and modeling
    Kajava, AV
    JOURNAL OF STRUCTURAL BIOLOGY, 2001, 134 (2-3) : 132 - 144
  • [6] Structural characterization and AlphaFold modeling of human T cell receptor recognition of NRAS cancer neoantigens
    Wu, Daichao
    Yin, Rui
    Chen, Guodong
    Ribeiro-Filho, Helder V.
    Cheung, Melyssa
    Robbins, Paul F.
    Mariuzza, Roy A.
    Pierce, Brian G.
    SCIENCE ADVANCES, 2024, 10 (47):
  • [7] Antibody structural modeling with prediction of immunoglobulin structure (PIGS)
    Marcatili, Paolo
    Olimpieri, Pier Paolo
    Chailyan, Anna
    Tramontano, Anna
    NATURE PROTOCOLS, 2014, 9 (12) : 2771 - 2783
  • [8] Molecular Modeling of an Orphan GPR18 Receptor
    Kuder, Kamil J.
    Karcz, Tadeusz
    Kaleta, Maria
    Kiec-Kononowicz, Katarzyna
    LETTERS IN DRUG DESIGN & DISCOVERY, 2019, 16 (10) : 1167 - 1174
  • [9] Quantitative structural modeling on the wavelength interval (Δλ) in synchronous fluorescence spectroscopy
    Samari, Fayezeh
    Yousefinejad, Saeed
    JOURNAL OF MOLECULAR STRUCTURE, 2017, 1148 : 101 - 110
  • [10] Structural templates for modeling homodimers
    Kundrotas, Petras J.
    Vakser, Ilya A.
    Janin, Joel
    PROTEIN SCIENCE, 2013, 22 (11) : 1655 - 1663