Characteristics and instabilities of mode-locked quantum-dot diode lasers

被引:12
|
作者
Li, Yan [2 ]
Lester, Luke. F. [2 ]
Chang, Derek [3 ]
Langrock, Carsten [3 ]
Fejer, M. M. [3 ]
Kane, Daniel J. [1 ]
机构
[1] Mesa Photon LLC, Santa Fe, NM 87505 USA
[2] Univ New Mexico, Ctr High Technol Mat, Albuquerque, NM 87106 USA
[3] Stanford Univ, Edward L Ginzton Lab, Stanford, CA 94305 USA
来源
OPTICS EXPRESS | 2013年 / 21卷 / 07期
基金
美国国家科学基金会;
关键词
PULSE CHARACTERIZATION; FEMTOSECOND PULSES; GENERATION; JITTER; GHZ;
D O I
10.1364/OE.21.008007
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Current pulse measurement methods have proven inadequate to fully understand the characteristics of passively mode-locked quantum-dot diode lasers. These devices are very difficult to characterize because of their low peak powers, high bandwidth, large time-bandwidth product, and large timing jitter. In this paper, we discuss the origin for the inadequacies of current pulse measurement techniques while presenting new ways of examining frequency-resolved optical gating (FROG) data to provide insight into the operation of these devices. Under the assumptions of a partial coherence model for the pulsed laser, it is shown that simultaneous time-frequency characterization is a necessary and sufficient condition for characterization of mode-locking. Full pulse characterization of quantum dot passively mode-locked lasers (QD MLLs) was done using FROG in a collinear configuration using an aperiodically poled lithium niobate waveguide-based FROG pulse measurement system. (C) 2013 Optical Society of America
引用
收藏
页码:8007 / 8017
页数:11
相关论文
共 50 条
  • [31] Systematic investigation of the temperature behavior of InAs/InP quantum nanostructure passively mode-locked lasers
    Klaime, K.
    Piron, R.
    Grillot, F.
    Dontabactouny, M.
    Loualiche, S.
    Le Corre, A.
    Yvind, K.
    QUANTUM DOTS AND NANOSTRUCTURES: SYNTHESIS, CHARACTERIZATION, AND MODELING X, 2013, 8634
  • [32] Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers
    Chusseau, Laurent
    Philippe, Fabrice
    Disanto, Filippo
    OPTICS EXPRESS, 2014, 22 (05): : 5312 - 5324
  • [33] Integrated CMOS-Compatible Mode-Locked Lasers and. Their Optoelectronic Applications
    Kaertner, Franz X.
    Singh, Neetesh
    2019 IEEE BICMOS AND COMPOUND SEMICONDUCTOR INTEGRATED CIRCUITS AND TECHNOLOGY SYMPOSIUM (BCICTS 2019), 2019,
  • [34] Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers
    Jung, Kwangyun
    Kim, Jungwon
    OPTICS LETTERS, 2012, 37 (14) : 2958 - 2960
  • [35] Broadband Ultrashort Pulses in Passively Mode-Locked Fiber Lasers
    Komarov, A. K.
    Komarov, K. P.
    Zhao, L. M.
    OPTICS AND SPECTROSCOPY, 2020, 128 (04) : 493 - 500
  • [36] Lumped versus distributed description of mode-locked fiber lasers
    Zaviyalov, Alexandr
    Iliew, Rumen
    Egorov, Oleg
    Lederer, Falk
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2010, 27 (11) : 2313 - 2321
  • [37] Transition dynamics for multi-pulsing in mode-locked lasers
    Bale, Brandon G.
    Kieu, Khanh
    Kutz, J. Nathan
    Wise, Frank
    OPTICS EXPRESS, 2009, 17 (25): : 23137 - 23146
  • [38] Passively Mode-Locked Diode Laser With Optimized Dispersion Management
    Balzer, Jan C.
    Pilny, Rouven H.
    Doepke, Benjamin
    Klehr, Andreas
    Erbert, Goetz
    Traenkle, Guenter
    Brenner, Carsten
    Hofmann, Martin R.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2015, 21 (06) : 16 - 23
  • [39] Ultrashort pulse formation and evolution in mode-locked fiber lasers
    Baumgartl, M.
    Ortac, B.
    Schreiber, T.
    Limpert, J.
    Tuennermann, A.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (03): : 523 - 536
  • [40] Multi-soliton complexes in mode-locked fiber lasers
    Zaviyalov, A.
    Iliew, R.
    Egorov, O.
    Lederer, F.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2011, 104 (03): : 513 - 521