Response function of a moving contact line

被引:1
|
作者
Perrin, H. [1 ]
Belardinelli, D. [2 ,3 ]
Sbragaglia, M. [2 ,3 ]
Andreotti, B. [1 ]
机构
[1] Univ Paris Diderot, CNRS, Lab Phys Stat, UMR 8550,ENS, 24 Rue Lhomond, F-75005 Paris, France
[2] Univ Roma Tor Vergata, Dept Phys, Via Ric Sci 1, I-00133 Rome, Italy
[3] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Via Ric Sci 1, I-00133 Rome, Italy
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 04期
关键词
FREE-ENERGY; SURFACE; MODEL; TENSION; SIZE; HYSTERESIS; MECHANISM; DYNAMICS; PATTERNS; RHEOLOGY;
D O I
10.1103/PhysRevFluids.3.044001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The hydrodynamics of a liquid-vapor interface in contact with a heterogeneous surface is largely impacted by the presence of defects at the smaller scales. Such defects introduce morphological disturbances on the contact line and ultimately determine the force exerted on the wedge of liquid in contact with the surface. From the mathematical point of view, defects introduce perturbation modes, whose space-time evolution is governed by the interfacial hydrodynamic equations of the contact line. In this paper we derive the response function of the contact line to such generic perturbations. The contact line response may be used to design simplified one-dimensional time-dependent models accounting for the complexity of interfacial flows coupled to nanoscale defects, yet offering a more tractable mathematical framework to explore contact line motion through a disordered energy landscape.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Axisymmetric oscillations of a cylindrical droplet with a moving contact line
    Alabuzhev, A. A.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2016, 57 (06) : 1006 - 1015
  • [22] A moving contact line as a rheometer for nanometric interfacial layers
    Lhermerout, Romain
    Perrin, Hugo
    Rolley, Etienne
    Andreotti, Bruno
    Davitt, Kristina
    NATURE COMMUNICATIONS, 2016, 7
  • [23] Energy dissipation of a contact line moving on a nanotopographical defect
    Franiatte, Sylvain
    Paredes, Germercy
    Ondarcuhu, Thierry
    Tordjeman, Philippe
    SOFT MATTER, 2024, 20 (18) : 3798 - 3805
  • [24] Numerical investigations of electrothermally actuated moving contact line dynamics: Effect of property contrasts
    Kunti, Golak
    Bhattacharya, Anandaroop
    Chakraborty, Suman
    PHYSICS OF FLUIDS, 2017, 29 (08)
  • [25] Numerical study on the stick-slip motion of contact line moving on heterogeneous surfaces
    Liu, Ming
    Chen, Xiao-Peng
    PHYSICS OF FLUIDS, 2017, 29 (08)
  • [26] A level-set method for moving contact lines with contact angle hysteresis
    Zhang, Jiaqi
    Yue, Pengtao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 418
  • [27] Solvability of a moving contact-line problem with interface formation for an incompressible viscous fluid
    Kusaka, Yoshiaki
    BOUNDARY VALUE PROBLEMS, 2022, 2022 (01)
  • [28] Moving contact line dynamics: from diffuse to sharp interfaces
    Kusumaatmaja, H.
    Hemingway, E. J.
    Fielding, S. M.
    JOURNAL OF FLUID MECHANICS, 2016, 788 : 209 - 227
  • [29] Hidden microscopic life of the moving contact line of a waterlike liquid
    Fernandez-Toledano, Juan Carlos
    Blake, Terence D.
    De Coninck, Joel
    Kanduc, Matej
    PHYSICAL REVIEW FLUIDS, 2020, 5 (10)
  • [30] Moving Contact Lines: Scales, Regimes, and Dynamical Transitions
    Snoeijer, Jacco H.
    Andreotti, Bruno
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 45, 2013, 45 : 269 - 292