Response function of a moving contact line

被引:1
|
作者
Perrin, H. [1 ]
Belardinelli, D. [2 ,3 ]
Sbragaglia, M. [2 ,3 ]
Andreotti, B. [1 ]
机构
[1] Univ Paris Diderot, CNRS, Lab Phys Stat, UMR 8550,ENS, 24 Rue Lhomond, F-75005 Paris, France
[2] Univ Roma Tor Vergata, Dept Phys, Via Ric Sci 1, I-00133 Rome, Italy
[3] Univ Roma Tor Vergata, Ist Nazl Fis Nucl, Via Ric Sci 1, I-00133 Rome, Italy
来源
PHYSICAL REVIEW FLUIDS | 2018年 / 3卷 / 04期
关键词
FREE-ENERGY; SURFACE; MODEL; TENSION; SIZE; HYSTERESIS; MECHANISM; DYNAMICS; PATTERNS; RHEOLOGY;
D O I
10.1103/PhysRevFluids.3.044001
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The hydrodynamics of a liquid-vapor interface in contact with a heterogeneous surface is largely impacted by the presence of defects at the smaller scales. Such defects introduce morphological disturbances on the contact line and ultimately determine the force exerted on the wedge of liquid in contact with the surface. From the mathematical point of view, defects introduce perturbation modes, whose space-time evolution is governed by the interfacial hydrodynamic equations of the contact line. In this paper we derive the response function of the contact line to such generic perturbations. The contact line response may be used to design simplified one-dimensional time-dependent models accounting for the complexity of interfacial flows coupled to nanoscale defects, yet offering a more tractable mathematical framework to explore contact line motion through a disordered energy landscape.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A general solution of dewetting flow with a moving contact line
    Diaz, M. Elena
    Cerro, Ramon L.
    PHYSICS OF FLUIDS, 2021, 33 (10)
  • [2] Molecular Desorption by a Moving Contact Line
    Franiatte, Sylvain
    Tordjeman, Philippe
    Ondarcuhu, Thierry
    PHYSICAL REVIEW LETTERS, 2021, 127 (06)
  • [3] Numerical simulation of bubble formation on orifice plates with a moving contact line
    Chen, Yuming
    Mertz, Rainer
    Kulenovic, Rudi
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2009, 35 (01) : 66 - 77
  • [4] Resolving the microscopic hydrodynamics at the moving contact line
    Giri, Amal K.
    Malgaretti, Paolo
    Peschka, Dirk
    Sega, Marcello
    PHYSICAL REVIEW FLUIDS, 2022, 7 (10)
  • [5] Response to contact line perturbations and chemo-capillary instability of a sessile drop
    Pismen, L. M.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2011, 383 (1-3) : 23 - 31
  • [6] Contact line moving on a solid
    Pomeau, Y.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 197 (01) : 15 - 31
  • [7] Flows with a moving contact line
    Kiryushin, V. V.
    FLUID DYNAMICS, 2012, 47 (02) : 157 - 167
  • [8] The asymptotics of the moving contact line:cracking an old nut
    Sibley, David N.
    Nold, Andreas
    Kalliadasis, Serafim
    JOURNAL OF FLUID MECHANICS, 2015, 764 : 445 - 462
  • [9] On multiscale moving contact line theory
    Li, Shaofan
    Fan, Houfu
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2179):
  • [10] Avalanches and Extreme Value Statistics of a Mesoscale Moving Contact Line
    Yan, Caishan
    Guan, Dongshi
    Wang, Yin
    Lai, Pik -Yin
    Chen, Hsuan-Yi
    Tong, Penger
    PHYSICAL REVIEW LETTERS, 2024, 132 (08)