Tomography of a Cryo-immobilized Yeast Cell Using Ptychographic Coherent X-Ray Diffractive Imaging

被引:11
|
作者
Giewekemeyer, K. [1 ]
Hackenberg, C. [2 ]
Aquila, A. [1 ]
Wilke, R. N. [3 ]
Groves, M. R. [2 ]
Jordanova, R. [2 ]
Lamzin, V. S. [2 ]
Borchers, G. [1 ]
Saksl, K. [4 ]
Zozulya, A. V. [5 ]
Sprung, M. [5 ]
Mancuso, A. P. [1 ]
机构
[1] European XFEL GmbH, Hamburg, Germany
[2] DESY, European Mol Biol Lab Hamburg, Hamburg, Germany
[3] Univ Gottingen, Inst Rontgenphys, D-37073 Gottingen, Germany
[4] Slovak Acad Sci, Inst Mat Res, Kosice, Slovakia
[5] DESY Photon Sci, Hamburg, Germany
关键词
FLUORESCENCE MICROSCOPY; COMPUTED-TOMOGRAPHY; NANO-DIFFRACTION; RESOLUTION; NANOSCALE; WHOLE; DETECTOR; OPTICS; LASER;
D O I
10.1016/j.bpj.2015.08.047
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The structural investigation of noncrystalline, soft biological matter using x-rays is of rapidly increasing interest. Large-scale x-ray sources, such as synchrotrons and x-ray free electron lasers, are becoming ever brighter and make the study of such weakly scattering materials more feasible. Variants of coherent diffractive imaging (CDI) are particularly attractive, as the absence of an objective lens between sample and detector ensures that no x-ray photons scattered by a sample are lost in a limited-efficiency imaging system. Furthermore, the reconstructed complex image contains quantitative density information, most directly accessible through its phase, which is proportional to the projected electron density of the sample. If applied in three dimensions, CDI can thus recover the sample's electron density distribution. As the extension to three dimensions is accompanied by a considerable dose applied to the sample, cryogenic cooling is necessary to optimize the structural preservation of a unique sample in the beam. This, however, imposes considerable technical challenges on the experimental realization. Here, we show a route toward the solution of these challenges using ptychographic CDI (PCDI), a scanning variant of coherent imaging. We present an experimental demonstration of the combination of three-dimensional structure determination through PCDI with a cryogenically cooled biological sample-a budding yeast cell (Saccharomyces cerevisiae)-using hard (7.9 keV) synchrotron x-rays. This proof-of-principle demonstration in particular illustrates the potential of PCDI for highly sensitive, quantitative three-dimensional density determination of cryogenically cooled, hydrated, and unstained biological matter and paves the way to future studies of unique, nonreproducible biological cells at higher resolution.
引用
收藏
页码:1986 / 1995
页数:10
相关论文
共 50 条
  • [31] Hard x-ray nano-beam characterization by ptychographic imaging
    Schroer, Christian G.
    Hoenig, Susanne
    Goldschmidt, Andy
    Hoppe, Robert
    Patommel, Jens
    Samberg, Dirk
    Schropp, Andreas
    Seiboth, Frank
    Stephan, Sandra
    Schoeder, Sebastian
    Burghammer, Manfred
    Denecke, Melissa
    Wellenreuther, Gerd
    Falkenberg, Gerald
    ADVANCES IN COMPUTATIONAL METHODS FOR X-RAY OPTICS II, 2011, 8141
  • [32] Methods of Coherent X-Ray Diffraction Imaging
    Prosekov, P. A.
    Nosik, V. L.
    Blagov, A. E.
    CRYSTALLOGRAPHY REPORTS, 2021, 66 (06) : 867 - 882
  • [33] Wavelength-scale ptychographic coherent diffractive imaging using a high-order harmonic source
    Tadesse, Getnet K.
    Eschen, Wilhelm
    Klas, Robert
    Tschernajew, Maxim
    Tuitje, Frederik
    Steinert, Michael
    Zilk, Matthias
    Schuster, Vittoria
    Zuerch, Michael
    Pertsch, Thomas
    Spielmann, Christian
    Limpert, Jens
    Rothhardt, Jan
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [34] Monitoring moisture distribution in textile materials using grating interferometry and ptychographic X-ray imaging
    Esmaeili, Morteza
    Floystad, Jostein B.
    Hipp, Alexander
    Willner, Marian
    Bech, Martin
    Diaz, Ana
    Royset, Arne
    Andreasen, Jens W.
    Pfeiffer, Franz
    Breiby, Dag W.
    TEXTILE RESEARCH JOURNAL, 2015, 85 (01) : 80 - 90
  • [35] Cryo-scanning x-ray diffraction microscopy of frozen-hydrated yeast
    Lima, E.
    Diaz, A.
    Guizar-Sicairos, M.
    Gorelick, S.
    Pernot, P.
    Schleier, T.
    Menzel, A.
    JOURNAL OF MICROSCOPY, 2013, 249 (01) : 1 - 7
  • [36] Continuous motion scan ptychography: characterization for increased speed in coherent x-ray imaging
    Deng, Junjing
    Nashed, Youssef S. G.
    Chen, Si
    Phillips, Nicholas W.
    Peterka, Tom
    Ross, Rob
    Vogt, Stefan
    Jacobsen, Chris
    Vine, David J.
    OPTICS EXPRESS, 2015, 23 (05): : 5438 - 5451
  • [37] Holographic and diffractive x-ray imaging using waveguides as quasi-point sources
    Giewekemeyer, K.
    Neubauer, H.
    Kalbfleisch, S.
    Krueger, S. P.
    Salditt, T.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [38] Three-dimensional iterative multislice reconstruction for ptychographic X-ray computed tomography
    Shimomura, Kei
    Hirose, Makoto
    Higashino, Takaya
    Takahashi, Yukio
    OPTICS EXPRESS, 2018, 26 (24): : 31199 - 31208
  • [39] Quantitative disentanglement of nanocrystalline phases in cement pastes by synchrotron ptychographic X-ray tomography
    Cuesta, Ana
    De la Torre, Angeles G.
    Santacruz, Isabel
    Diaz, Ana
    Trtik, Pavel
    Holler, Mirko
    Lothenbach, Barbara
    Aranda, Miguel A. G.
    IUCRJ, 2019, 6 : 473 - 491
  • [40] A Viewpoint on X-ray Tomography Imaging in Electrocatalysis
    Chen, Yechuan
    Stelmacovich, Genevieve
    Mularczyk, Adrian
    Parkinson, Dilworth
    Babu, Siddharth Komini
    Forner-Cuenca, Antoni
    Pylypenko, Svitlana
    Zenyuk, Iryna, V
    ACS CATALYSIS, 2023, 13 (15) : 10010 - 10025