Absolute retracts and essential extensions in congruence modular varieties

被引:1
|
作者
Ouwehand, Peter [1 ]
机构
[1] Univ Stellenbosch, Dept Math Sci, ZA-7600 Stellenbosch, South Africa
关键词
absolute retracts; essential extensions; congruence modular varieties of universal algebras; CEP; RS; AP;
D O I
10.1007/s00012-012-0217-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies absolute retracts in congruence modular varieties of universal algebras. It is shown that every absolute retract with finite dimensional congruence lattice is a product of subdirectly irreducible algebras. Further, every absolute retract in a residually small variety is the product of an abelian algebra and a centerless algebra.
引用
收藏
页码:201 / 211
页数:11
相关论文
共 50 条
  • [31] Hyperspaces of absolute retracts and absolute neighborhood retracts of a plane
    Cauty, R
    Dobrowolski, T
    Gladdines, H
    vanMill, J
    FUNDAMENTA MATHEMATICAE, 1995, 148 (03) : 257 - 282
  • [32] On retracts, absolute retracts, and foldings in cographs
    Kloks, Ton
    Wang, Yue-Li
    OPTIMIZATION LETTERS, 2018, 12 (03) : 535 - 549
  • [33] On Retracts, Absolute Retracts, and Folds in Cographs
    Kloks, Ton
    Wang, Yue-Li
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, WG 2013, 2013, 8165 : 321 - 332
  • [34] On retracts, absolute retracts, and foldings in cographs
    Ton Kloks
    Yue-Li Wang
    Optimization Letters, 2018, 12 : 535 - 549
  • [35] Optimal Mal'tsev conditions for congruence modular varieties
    Czédli, G
    Horváth, EK
    Lipparini, P
    ALGEBRA UNIVERSALIS, 2005, 53 (2-3) : 267 - 279
  • [36] Almost all minimal idempotent varieties are congruence modular
    Kearnes, KA
    ALGEBRA UNIVERSALIS, 2000, 44 (1-2) : 39 - 45
  • [37] MINIMAL MODULAR CONGRUENCE VARIETIES - PRELIMINARY-REPORT
    FREESE, RS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A4 - A5
  • [38] Many-sorted algebras in congruence modular varieties
    Wolf, CA
    ALGEBRA UNIVERSALIS, 1996, 36 (01) : 66 - 80
  • [39] Optimal Mal’tsev conditions for congruence modular varieties
    Gábor Czédli
    Eszter K. Horváth
    Paolo Lipparini
    algebra universalis, 2005, 53 : 267 - 279
  • [40] Congruence modular varieties: commutator theory and its uses
    McKenzie, R
    Snow, J
    Structural Theory of Automata, Semigroups, and Universal ALgebra, 2005, 207 : 273 - 329