A Class of Stable and Conservative Finite Difference Schemes for the Cahn-Hilliard Equation

被引:1
|
作者
Wang, Ting-chun [1 ,2 ]
Zhao, Li-mei [1 ]
Guo, Bo-ling [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2015年 / 31卷 / 04期
基金
中国国家自然科学基金;
关键词
Cahn-Hilliard equation; finite difference scheme; conservation of mass; dissipation of energy; convergence; iterative algorithm; TIME-STEPPING METHODS; SCHRODINGER-EQUATION; POLYMER MIXTURES; PHASE-SEPARATION; GALERKIN METHODS; ELEMENT-METHOD; INTERDIFFUSION; INTERFACES; STABILITY; ENERGY;
D O I
10.1007/s10255-015-0536-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a class of stable finite difference schemes for the initial-boundary value problem of the Cahn-Hilliard equation. These schemes are proved to inherit the total mass conservation and energy dissipation in the discrete level. The dissipation of the total energy implies boundness of the numerical solutions in the discrete H-1 norm. This in turn implies boundedness of the numerical solutions in the maximum norm and hence the stability of the difference schemes. Unique existence of the numerical solutions is proved by the fixed-point theorem. Convergence rate of the class of finite difference schemes is proved to be O(h(2) + tau(2)) with time step tau and mesh size h. An efficient iterative algorithm for solving these nonlinear schemes is proposed and discussed in detail.
引用
收藏
页码:863 / 878
页数:16
相关论文
共 50 条
  • [31] Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation
    Du, Qiang
    Ju, Lili
    Li, Xiao
    Qiao, Zhonghua
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 363 : 39 - 54
  • [32] DISCONTINUOUS GALERKIN FINITE ELEMENT APPROXIMATION OF THE CAHN-HILLIARD EQUATION WITH CONVECTION
    Kay, David
    Styles, Vanessa
    Sueli, Endre
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) : 2660 - 2685
  • [33] Hessian recovery based finite element methods for the Cahn-Hilliard equation
    Xu, Minqiang
    Guo, Hailong
    Zou, Qingsong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 386 : 524 - 540
  • [34] Comparison study of the conservative Allen-Cahn and the Cahn-Hilliard equations
    Lee, Dongsun
    Kim, Junseok
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2016, 119 : 35 - 56
  • [35] A conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient
    Choo, SM
    Chung, SK
    Lee, YJ
    APPLIED NUMERICAL MATHEMATICS, 2004, 51 (2-3) : 207 - 219
  • [36] Unconditional Bound-Preserving and Energy-Dissipating Finite-Volume Schemes for the Cahn-Hilliard Equation
    Bailo, Rafael
    Carrillo, Jose A.
    Kalliadasis, Serafim
    Perez, Sergio P.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 34 (03) : 713 - 748
  • [37] OPTIMIZED SCHWARZ METHODS FOR THE CAHN-HILLIARD EQUATION
    Xu, Yingxiang
    Sun, Yafei
    Wang, Shuangbin
    Gao, Shan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (02) : A427 - A456
  • [38] Convergence Analysis of Exponential Time Differencing Schemes for the Cahn-Hilliard Equation
    Li, Xiao
    Ju, Lili
    Meng, Xucheng
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (05) : 1510 - 1529
  • [39] A WEAK GALERKIN FINITE ELEMENT SCHEME FOR THE CAHN-HILLIARD EQUATION
    Wang, Junping
    Zhai, Qilong
    Zhang, Ran
    Zhang, Shangyou
    MATHEMATICS OF COMPUTATION, 2019, 88 (315) : 211 - 235
  • [40] A class of three dimensional Cahn-Hilliard equation with nonlinear diffusion
    Zhao, Xiaopeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 361 : 1 - 39