Generalized Mukai conjecture for special Fano varieties

被引:40
作者
Andreatta, Marco [1 ]
Chierici, Elena [1 ]
Occhetta, Gianluca [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Povo, TN, Italy
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2004年 / 2卷 / 02期
关键词
Fano varieties; Rational curves;
D O I
10.2478/BF02476544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Fano variety of dimension n, pseudoindex i(X) and Picard number rho(X). A generalization of a conjecture of Mukai says that rho(X)(i(X) - 1) <= n. We prove that the conjecture holds for a variety X of pseudoindex i(X) >= n+3/3 if X admits an unsplit covering family of rational curves; we also prove that this condition is satisfied if rho(X) > 1 and either X has a fiber type extremal contraction or has not small extremal contractions. Finally we prove that the conjecture holds if X has dimension five. (C) Central European Science Journals. All rights reserved.
引用
收藏
页码:272 / 293
页数:22
相关论文
共 13 条
  • [1] On manifolds whose tangent bundle contains an ample subbundle
    Andreatta, M
    Wisniewski, JA
    [J]. INVENTIONES MATHEMATICAE, 2001, 146 (01) : 209 - 217
  • [2] [Anonymous], 1996, ERGEBNISSE MATH
  • [3] A Mukai conjecture
    Bonavero, L
    Casagrande, C
    Debarre, O
    Druel, S
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (03) : 601 - 626
  • [4] Complex manifolds whose blow-up at a point is Fano
    Bonavero, L
    Campana, F
    Wisniewski, JA
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) : 463 - 468
  • [5] CAMPANA F, 1992, ANN SCI ECOLE NORM S, V25, P539
  • [6] Cho K., 2002, Adv. Stud. Pure Math., V35, P1, DOI DOI 10.2969/ASPM/03510001
  • [7] DEBARRE O, 2001, UNIVERSITEX, pR5
  • [8] Kebekus S, 2002, COMPLEX GEOMETRY, P147
  • [9] KOLLAR J, 1992, J DIFFER GEOM, V36, P765
  • [10] PROJECTIVE-MANIFOLDS WITH AMPLE TANGENT-BUNDLES
    MORI, S
    [J]. ANNALS OF MATHEMATICS, 1979, 110 (03) : 593 - 606