Generalized Mukai conjecture for special Fano varieties

被引:40
作者
Andreatta, Marco [1 ]
Chierici, Elena [1 ]
Occhetta, Gianluca [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Povo, TN, Italy
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2004年 / 2卷 / 02期
关键词
Fano varieties; Rational curves;
D O I
10.2478/BF02476544
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a Fano variety of dimension n, pseudoindex i(X) and Picard number rho(X). A generalization of a conjecture of Mukai says that rho(X)(i(X) - 1) <= n. We prove that the conjecture holds for a variety X of pseudoindex i(X) >= n+3/3 if X admits an unsplit covering family of rational curves; we also prove that this condition is satisfied if rho(X) > 1 and either X has a fiber type extremal contraction or has not small extremal contractions. Finally we prove that the conjecture holds if X has dimension five. (C) Central European Science Journals. All rights reserved.
引用
收藏
页码:272 / 293
页数:22
相关论文
共 13 条
[1]   On manifolds whose tangent bundle contains an ample subbundle [J].
Andreatta, M ;
Wisniewski, JA .
INVENTIONES MATHEMATICAE, 2001, 146 (01) :209-217
[2]  
[Anonymous], 1996, ERGEBNISSE MATH
[3]   A Mukai conjecture [J].
Bonavero, L ;
Casagrande, C ;
Debarre, O ;
Druel, S .
COMMENTARII MATHEMATICI HELVETICI, 2003, 78 (03) :601-626
[4]   Complex manifolds whose blow-up at a point is Fano [J].
Bonavero, L ;
Campana, F ;
Wisniewski, JA .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (06) :463-468
[5]  
CAMPANA F, 1992, ANN SCI ECOLE NORM S, V25, P539
[6]  
Cho K., 2002, Adv. Stud. Pure Math., V35, P1, DOI DOI 10.2969/ASPM/03510001
[7]  
DEBARRE O, 2001, UNIVERSITEX, pR5
[8]  
Kebekus S, 2002, COMPLEX GEOMETRY, P147
[9]  
KOLLAR J, 1992, J DIFFER GEOM, V36, P765
[10]   PROJECTIVE-MANIFOLDS WITH AMPLE TANGENT-BUNDLES [J].
MORI, S .
ANNALS OF MATHEMATICS, 1979, 110 (03) :593-606