Convergence of a simple subgradient level method

被引:55
作者
Goffin, JL
Kiwiel, KC
机构
[1] McGill Univ, Fac Management, Gerad, Montreal, PQ H3A 1G5, Canada
[2] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
nondifferentiable optimization; subgradient optimization;
D O I
10.1007/s101070050053
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study the subgradient projection method for convex optimization with Brannlund's level control for estimating the optimal value. We establish global convergence in objective values without additional assumptions employed in the literature.
引用
收藏
页码:207 / 211
页数:5
相关论文
共 14 条
[1]   A GENERALIZATION OF POLYAK CONVERGENCE RESULT FOR SUBGRADIENT OPTIMIZATION [J].
ALLEN, E ;
HELGASON, R ;
KENNINGTON, J ;
SHETTY, B .
MATHEMATICAL PROGRAMMING, 1987, 37 (03) :309-317
[2]   ON THE CHOICE OF STEP SIZE IN SUBGRADIENT OPTIMIZATION [J].
BAZARAA, MS ;
SHERALI, HD .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1981, 7 (04) :380-388
[3]  
BERTSEKAS DP, 1995, NONLINEAR PROGRAMMIN
[4]   A DESCENT PROXIMAL LEVEL BUNDLE METHOD FOR CONVEX NONDIFFERENTIABLE OPTIMIZATION [J].
BRANNLUND, U ;
KIWIEL, KC ;
LINDBERG, PO .
OPERATIONS RESEARCH LETTERS, 1995, 17 (03) :121-126
[5]  
BRANNLUND U, 1993, THESIS ROYAL I TECHN
[6]   CONVERGENCE RATES OF SUBGRADIENT OPTIMIZATION METHODS [J].
GOFFIN, JL .
MATHEMATICAL PROGRAMMING, 1977, 13 (03) :329-347
[7]  
Held M., 1974, Mathematical Programming, V6, P62, DOI 10.1007/BF01580223
[8]  
KIM SH, 1991, MATH PROGRAM, V49, P359
[9]   PROXIMAL LEVEL BUNDLE METHODS FOR CONVEX NONDIFFERENTIABLE OPTIMIZATION, SADDLE-POINT PROBLEMS AND VARIATIONAL-INEQUALITIES [J].
KIWIEL, KC .
MATHEMATICAL PROGRAMMING, 1995, 69 (01) :89-109
[10]   The efficiency of subgradient projection methods for convex optimization .1. General level methods [J].
Kiwiel, KC .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (02) :660-676