Preferential adsorption of polycarboxylate superplasticizers on cement and silica fume in ultra-high performance concrete (UHPC)

被引:155
作者
Schroefl, Ch. [1 ]
Gruber, M. [1 ]
Plank, J. [1 ]
机构
[1] Tech Univ Munich, D-85747 Garching, Germany
关键词
Cement; Adsorption; Silica fume; High-performance concrete; Polycarboxylate; PASTE;
D O I
10.1016/j.cemconres.2012.08.013
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
UHPC is fluidized particularly well when a blend of MPEG- and APEG-type PCEs is applied. Here, the mechanism for this behavior was investigated. Testing individual cement and micro silica pastes revealed that the MPEG-PCE disperses cement better than silica whereas the APEG-PCE fluidizes silica particularly well. This behavior is explained by preferential adsorption of APEG-PCE on silica while MPEG-PCEs exhibit a more balanced affinity to both cement and silica. Adsorption data obtained from individual cement and micro silica pastes were compared with those found for the fully formulated UHPC containing a cement/silica blend. In the UHPC formulation, both PCEs still exhibit preferential and selective adsorption similar as was observed for individual cement and silica pastes. Preferential adsorption of PCEs is explained by their different stereochemistry whereby the carboxylate groups have to match with the steric position of calcium ions/atoms situated at the surfaces of cement hydrates or silica. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1401 / 1408
页数:8
相关论文
共 50 条
  • [21] Rheological characteristics of Ultra-High performance concrete (UHPC) incorporating bentonite
    Li, Keke
    Leng, Yong
    Xu, Liuliu
    Zhang, Junjie
    Liu, Kangning
    Fan, Dingqiang
    Yu, Rui
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 349
  • [22] Microstructural investigation of calcium aluminate cement-based ultra-high performance concrete (UHPC) exposed to high temperatures
    Lee, N. K.
    Koh, K. T.
    Park, S. H.
    Ryu, G. S.
    CEMENT AND CONCRETE RESEARCH, 2017, 102 : 109 - 118
  • [23] Self-dispersing silica fume nanoparticles: A valuable admixture for ultra high-performance concrete
    Daoust, K.
    Begriche, A.
    Claverie, J. P.
    Tagnit-Hamou, A.
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 383
  • [24] Amorphous silica in ultra-high performance concrete: First hour of hydration
    Oertel, Tina
    Hutter, Frank
    Helbig, Uta
    Sextl, Gerhard
    CEMENT AND CONCRETE RESEARCH, 2014, 58 : 131 - 142
  • [25] Optimized design of ultra-high performance concrete (UHPC) with a high wet packing density
    Wang, Xinpeng
    Yu, Rui
    Song, Qiulei
    Shui, Zhonghe
    Liu, Zhen
    Wu, Shuo
    Hou, Dongshuai
    CEMENT AND CONCRETE RESEARCH, 2019, 126
  • [26] Characterization of mechanical properties by preferential supplant of cement with GGBS and silica fume in concrete
    Mohan, A.
    Hayat, Md Tabish
    MATERIALS TODAY-PROCEEDINGS, 2021, 43 : 1179 - 1189
  • [27] Functional microfibre reinforced ultra-high performance concrete (FMF-UHPC)
    Schleiting, Maximilian
    Wetzel, Alexander
    Krooss, Philipp
    Thiemicke, Jenny
    Niendorf, Thomas
    Middendorf, Bernhard
    Fehling, Ekkehard
    CEMENT AND CONCRETE RESEARCH, 2020, 130
  • [28] Effect of coarse basalt aggregates on the properties of Ultra-high Performance Concrete (UHPC)
    Li, P. P.
    Yu, Q. L.
    Brouwers, H. J. H.
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 170 : 649 - 659
  • [29] INFLUENCE OF CHEMICAL TREATMENT ON THE TENSILE PROPERTY OF ULTRA-HIGH PERFORMANCE CONCRETE (UHPC)
    Zhang, Lihui
    Liu, Jianzhong
    Zhang, Qianqian
    Han, Fangyu
    1ST INTERNATIONAL CONFERENCE ON UHPC MATERIALS AND STRUCTURES, 2016, 105 : 304 - 318
  • [30] Characterization of sustainable ultra-high performance concrete (UHPC) including expanded perlite
    Wang, Xinpeng
    Wu, Di
    Geng, Qihui
    Hou, Dongshuai
    Wang, Muhan
    Li, Liangwei
    Wang, Pan
    Chen, Dongdong
    Sun, Zhongping
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 303