The Hochschild cohomology ring of a group algebra

被引:54
|
作者
Siegel, SF [1 ]
Witherspoon, SJ
机构
[1] Univ Massachusetts, Dept Comp Sci, Amherst, MA 01003 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
D O I
10.1112/S0024611599011958
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:131 / 157
页数:27
相关论文
共 50 条
  • [31] From the Potential to the First Hochschild Cohomology Group of a Cluster Tilted Algebra
    Assem, Ibrahim
    Bustamante, Juan Carlos
    Trepode, Sonia
    Valdivieso, Yadira
    ALGEBRAS AND REPRESENTATION THEORY, 2021, 24 (05) : 1191 - 1220
  • [32] On the Decomposition of the Hochschild Cohomology Group of a Monomial Algebra Satisfying a Separability Condition
    Itaba, Ayako
    Furuya, Takahiko
    Sanada, Katsunori
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (06) : 2282 - 2292
  • [33] Hochschild cohomology of the integral group ring of a cyclic group and related algebras
    Holm, T
    ARCHIV DER MATHEMATIK, 1996, 67 (05) : 360 - 366
  • [34] Projective bimodule resolutions of an algebra and vanishing of the second Hochschild cohomology group
    Green, EL
    Snashall, N
    FORUM MATHEMATICUM, 2004, 16 (01) : 17 - 36
  • [35] The first Hochschild cohomology group of a schurian cluster-tilted algebra
    Assem, Ibrahim
    Redondo, Maria Julia
    MANUSCRIPTA MATHEMATICA, 2009, 128 (03) : 373 - 388
  • [36] The Lie algebra structure of the first Hochschild cohomology group for monomial algebras
    Strametz, C
    COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) : 733 - 738
  • [37] The first Hochschild cohomology group of a schurian cluster-tilted algebra
    Ibrahim Assem
    María Julia Redondo
    manuscripta mathematica, 2009, 128 : 373 - 388
  • [38] From the Potential to the First Hochschild Cohomology Group of a Cluster Tilted Algebra
    Ibrahim Assem
    Juan Carlos Bustamante
    Sonia Trepode
    Yadira Valdivieso
    Algebras and Representation Theory, 2021, 24 : 1191 - 1220
  • [39] The Hochschild cohomology ring of a Frobenius algebra with semisimple Nakayama automorphism is a Batalin-Vilkovisky algebra
    Lambre, Thierry
    Zhou, Guodong
    Zimmerman, Alexander
    JOURNAL OF ALGEBRA, 2016, 446 : 103 - 131
  • [40] The first Hochschild cohomology as a Lie algebra
    Rubio y Degrassi, Lleonard
    Schroll, Sibylle
    Solotar, Andrea
    QUAESTIONES MATHEMATICAE, 2023, 46 (09) : 1955 - 1980