Sparse Representation of Signals in Hardy Space

被引:0
作者
Li, Shuang [1 ]
Qian, Tao [1 ]
机构
[1] Univ Macau, Dept Math, Macau, Peoples R China
来源
QUATERNION AND CLIFFORD FOURIER TRANSFORMS AND WAVELETS | 2013年
关键词
Hardy space; compressed sensing; analytic signals; reproducing kernels; sparse representation; redundant dictionary; l(1); minimization; RECOVERY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Mathematically, signals can be seen as functions in certain spaces. And processing is more efficient in a sparse representation where few coefficients reveal the information. Such representations are constructed by decomposing signals into elementary waveforms. A set of all elementary waveforms is called a dictionary. In this chapter, we introduce a new kind of sparse representation of signals in Hardy space H-2(D) via the compressed sensing (CS) technique with the dictionary D = {e(a):e(a) (z) = root 1-vertical bar a vertical bar(2)/1-(a) over bar z,a is an element of D}. where D denotes the unit disk. In addition, we give examples exhibiting the algorithm.
引用
收藏
页码:321 / 332
页数:12
相关论文
共 50 条
  • [21] Dictionary learning for sparse representation of signals with hidden Markov model dependency
    Akhavan, S.
    Baghestani, F.
    Kazemi, P.
    Karami, A.
    Soltanian-Zadeh, H.
    DIGITAL SIGNAL PROCESSING, 2022, 123
  • [22] An Overcomplete Dictionary Design Algorithm for Sparse Representation of Piececwise Stationary Signals
    Jing, Wang Tian
    Yu, Zheng Bao
    Zhen, Yang
    18TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC 2012): GREEN AND SMART COMMUNICATIONS FOR IT INNOVATION, 2012, : 427 - 430
  • [23] A novel sparse representation algorithm for AIS real-time signals
    Shuaiheng Huai
    Shufang Zhang
    EURASIP Journal on Wireless Communications and Networking, 2018
  • [24] A Sparse Representation Method for DOA Estimation of Coherent Signals with Mutual Coupling
    Wu Zhen
    Zhao Dean
    Xu Xin
    Dai Jisheng
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 3771 - 3775
  • [25] Classification of Hyperspectral Image Based on Sparse Representation in Tangent Space
    Ni, Ding
    Ma, Hongbing
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (04) : 786 - 790
  • [26] Craniomaxillofacial Deformity Correction via Sparse Representation in Coherent Space
    Li, Zuoyong
    Teng, Shenghua
    Cheng, Yong
    Liu, Guang-Hai
    IEEE ACCESS, 2020, 8 : 24896 - 24903
  • [27] Ways to sparse representation:An overview
    YANG JingYu
    Science China(Information Sciences), 2009, (04) : 695 - 703
  • [28] Ways to sparse representation: An overview
    Yang JingYu
    Peng YiGang
    Xu WenLi
    Dai QiongHai
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2009, 52 (04): : 695 - 703
  • [29] Sparse representations of random signals
    Qian, Tao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (08) : 4210 - 4230
  • [30] Phase retrieval for sparse signals
    Wang, Yang
    Xu, Zhiqiang
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2014, 37 (03) : 531 - 544