ACCELERATION AND GLOBAL CONVERGENCE OF A FIRST-ORDER PRIMAL-DUAL METHOD FOR NONCONVEX PROBLEMS

被引:14
|
作者
Clason, Christian [1 ]
Mazurenko, Stanislav [2 ,3 ]
Valkonen, Tuomo [2 ,4 ]
机构
[1] Univ Duisburg Essen, Fac Math, D-45117 Essen, Germany
[2] Univ Liverpool, Dept Math Sci, Liverpool L69 7ZL, Merseyside, England
[3] Masaryk Univ, Fac Sci, Kamenice 5,Bld A13, Brno 62500, Czech Republic
[4] Escuela Politec Nacl, Ladron de Guevara E11-253, Quito 170109, Ecuador
基金
英国工程与自然科学研究理事会;
关键词
acceleration; convergence; global; primal-dual; first order; nonconvex; OPTIMIZATION; MINIMIZATION; ALGORITHMS; OPERATORS;
D O I
10.1137/18M1170194
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The primal-dual hybrid gradient method, modified (PDHGM, also known as the Chambolle-Pock method), has proved very successful for convex optimization problems involving linear operators arising in image processing and inverse problems. In this paper, we analyze an extension to nonconvex problems that arise if the operator is nonlinear. Based on the idea of testing, we derive new step-length parameter conditions for the convergence in infinite-dimensional Hilbert spaces and provide acceleration rules for suitably (locally and/or partially) monotone problems. Importantly, we prove linear convergence rates as well as global convergence in certain cases. We demonstrate the efficacy of these step-length rules for PDE-constrained optimization problems.
引用
收藏
页码:933 / 963
页数:31
相关论文
共 50 条
  • [41] An Lp-primal-dual finite element method for first-order transport problems
    Li, Dan
    Wang, Chunmei
    Wang, Junping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 434
  • [42] A stochastic primal-dual method for a class of nonconvex constrained optimization
    Jin, Lingzi
    Wang, Xiao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 83 (01) : 143 - 180
  • [43] A stochastic primal-dual method for a class of nonconvex constrained optimization
    Lingzi Jin
    Xiao Wang
    Computational Optimization and Applications, 2022, 83 : 143 - 180
  • [44] Stable Convergence of a Primal-Dual Method for Multi-agent Optimization Problems
    Konnov, I. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (12) : 5320 - 5331
  • [45] Stable Convergence of a Primal-Dual Method for Multi-agent Optimization Problems
    I. V. Konnov
    Lobachevskii Journal of Mathematics, 2023, 44 : 5320 - 5331
  • [46] Faster first-order primal-dual methods for linear programming using restarts and sharpness
    Applegate, David
    Hinder, Oliver
    Lu, Haihao
    Lubin, Miles
    MATHEMATICAL PROGRAMMING, 2023, 201 (1-2) : 133 - 184
  • [47] Faster first-order primal-dual methods for linear programming using restarts and sharpness
    David Applegate
    Oliver Hinder
    Haihao Lu
    Miles Lubin
    Mathematical Programming, 2023, 201 : 133 - 184
  • [48] Positive-contrast susceptibility imaging based on first-order primal-dual optimization
    Shi, Caiyun
    Cheng, Jing
    Xie, Guoxi
    Su, Shi
    Chang, Yuchou
    Chen, Hanwei
    Liu, Xin
    Wang, Haifeng
    Liang, Dong
    MAGNETIC RESONANCE IN MEDICINE, 2019, 82 (03) : 1120 - 1128
  • [49] Embedded Model Predictive Control on a PLC Using a Primal-Dual First-Order Method for a Subsea Separation Process
    Kufoalor, D. K. M.
    Richter, S.
    Imsland, L.
    Johansen, T. A.
    Morari, M.
    Eikrem, G. O.
    2014 22ND MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2014, : 368 - 373
  • [50] NESTT: A Nonconvex Primal-Dual Splitting Method for Distributed and Stochastic Optimization
    Hajinezhad, Davood
    Hong, Mingyi
    Zhao, Tuo
    Wang, Zhaoran
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29