Hierarchical Design of Mn2P Nanoparticles Embedded in N,P-Codoped Porous Carbon Nanosheets Enables Highly Durable Lithium Storage

被引:44
作者
Chen, Qihang [1 ]
Cheng, Yong [1 ]
Liu, Haodong [2 ]
Zhang, Qiaobao [1 ]
Petrova, Victoria [2 ]
Chen, Huixin [3 ]
Liu, Ping [2 ]
Peng, Dong-Liang [1 ]
Liu, Meilin [4 ]
Wang, Ming-Sheng [1 ]
机构
[1] Xiamen Univ, Dept Mat Sci & Engn, Coll Mat, Xiamen 361005, Fujian, Peoples R China
[2] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
[3] Chinese Acad Sci, Xiamen Inst Rare Earth Mat, Haixi Inst, Xiamen 361021, Fujian, Peoples R China
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
Mn2P nanoparticles; carbon nanosheets; in situ TEM; anode materials; Li-ion batteries; RICH LAYERED-OXIDE; ANODE MATERIAL; SURFACE MODIFICATION; COMPOSITE ANODE; GRAPHENE OXIDE; SUPERIOR ANODE; LARGE-CAPACITY; LONG-TERM; ION; PERFORMANCE;
D O I
10.1021/acsami.0c11678
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Although transition metal phosphide anodes possess high theoretical capacities, their inferior electronic conductivities and drastic volume variations during cycling lead to poor rate capability and rapid capacity fading. To simultaneously overcome these issues, we report a hierarchical heterostructure consisting of isolated Mn2P nanoparticles embedded into nitrogen- and phosphorus-codoped porous carbon nanosheets (denoted as Mn2P@NPC) as a viable anode for lithium-ion batteries (LIBs). The resulting Mn2P@NPC design manifests outstanding electrochemical performances, namely, high reversible capacity (598 mA h g(-1) after 300 cycles at 0.1 A g(-1)), exceptional rate capability (347 mA h g(-1) at 4 A g(-1)) and excellent cycling stability (99% capacity retention at 4 A g(-1) after 2000 cycles). The robust structure stability of Mn2P@NPC electrode during cycling has been revealed by the in situ and ex situ transmission electron microscopy (TEM) characterizations, giving rise to long-term cyclability. Using in situ selected area electron diffraction and ex situ high-resolution TEM studies, we have unraveled the dominant lithium storage mechanism and confirmed that the superior lithium storage performance of Mn2P@ NPC originated from the reversible conversion reaction. Furthermore, the prelithiated Mn2P@NPC parallel to LiFePO4 full cell exhibits impressive rate capability and cycling stability. This work introduces the potential for engineering high-performance anodes for next-generation high-energy-density LIBs.
引用
收藏
页码:36247 / 36258
页数:12
相关论文
共 70 条
[1]   Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes [J].
An, Weili ;
Gao, Biao ;
Mei, Shixiong ;
Xiang, Ben ;
Fu, Jijiang ;
Wang, Lei ;
Zhang, Qiaobao ;
Chu, Paul K. ;
Huo, Kaifu .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]   One-Step Construction of N,P-Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage [J].
Bai, Jing ;
Xi, Baojuan ;
Mao, Hongzhi ;
Lin, Yue ;
Ma, Xiaojian ;
Feng, Jinkui ;
Xiong, Shenglin .
ADVANCED MATERIALS, 2018, 30 (35)
[3]   3D Hierarchical Porous α-Fe2O3 Nanosheets for High-Performance Lithium-Ion Batteries [J].
Cao, Kangzhe ;
Jiao, Lifang ;
Liu, Huiqiao ;
Liu, Yongchang ;
Wang, Yijing ;
Guo, Zaiping ;
Yuan, Huatang .
ADVANCED ENERGY MATERIALS, 2015, 5 (04)
[4]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[5]   Hierarchical mesoporous MoSe2@CoSe/N-doped carbon nanocomposite for sodium ion batteries and hydrogen evolution reaction applications [J].
Chen, Jing ;
Pan, Anqiang ;
Wang, Yaping ;
Cao, Xinxin ;
Zhang, Wenchao ;
Kong, Xiangzhong ;
Su, Qiong ;
Lin, Jiande ;
Cao, Guozhong ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2019, 21 :97-106
[6]   Porous α-Fe2O3 nanorods supported on carbon nanotubes-graphene foam as superior anode for lithium ion batteries [J].
Chen, Minghua ;
Liu, Jilei ;
Chao, Dongliang ;
Wang, Jin ;
Yin, Jinghua ;
Lin, Jianyi ;
Fan, Hong Jin ;
Shen, Ze Xiang .
NANO ENERGY, 2014, 9 :364-372
[7]   Co-Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium-Sulfur Batteries [J].
Chen, Yi ;
Zhang, Wenxue ;
Zhou, Dong ;
Tian, Huajun ;
Su, Dawei ;
Wang, Chengyin ;
Stockdale, Declan ;
Kang, Feiyu ;
Li, Baohua ;
Wang, Guoxiu .
ACS NANO, 2019, 13 (04) :4731-4741
[8]   Multiple Anionic Transition-Metal Oxycarbide for Better Lithium Storage and Facilitated Multielectron Reactions [J].
Cuan, Jing ;
Zhou, You ;
Zhang, Jian ;
Zhou, Tengfei ;
Liang, Gemeng ;
Li, Sean ;
Yu, Xuebin ;
Pang, Wei Kong ;
Guo, Zaiping .
ACS NANO, 2019, 13 (10) :11665-11675
[9]   Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries [J].
Dong, Caifu ;
Guo, Lijun ;
He, Yanyan ;
Chen, Chaoji ;
Qian, Yitai ;
Chen, Yanan ;
Xu, Liqiang .
ENERGY STORAGE MATERIALS, 2018, 15 :234-241
[10]   Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries [J].
Gao, Hong ;
Yang, Fuhua ;
Zheng, Yang ;
Zhang, Qing ;
Hao, Junnan ;
Zhang, Shilin ;
Zheng, Hao ;
Chen, Jun ;
Liu, Huakun ;
Guo, Zaiping .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (05) :5373-5379