Existence of solutions for q-fractional differential equations with nonlocal Erdelyi-Kober q-fractional integral condition

被引:10
作者
Jiang, Min [1 ]
Huang, Rengang [2 ]
机构
[1] Guizhou Minzu Univ, Sch Data Sci & Informat Engn, Guiyang 550025, Peoples R China
[2] Guizhou Minzu Univ, Coll Business, Guiyang 550025, Peoples R China
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 06期
关键词
q-fractional differential equations; Erdelyi-Kober q-fractional integral; fixed point theorems; Riemann-Liouville fractional derivatives;
D O I
10.3934/math.2020421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain sufficient conditions for the existence, uniqueness of solutions for a fractional q-difference equation with nonlocal Erdelyi-Kober q-fractional integral condition. Our approach is based on some classical fixed point techniques, as Banach contraction principle and Schauder's fixed point theorem. Examples illustrating the obtained results are also presented.
引用
收藏
页码:6537 / 6551
页数:15
相关论文
共 24 条
  • [1] CERTAIN FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    AGARWAL, RP
    [J]. PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 : 365 - &
  • [2] Impulsive fractional q-integro-difference equations with separated boundary conditions
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    Alsaedi, Ahmed
    Alsulami, Hamed H.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 281 : 199 - 213
  • [3] Existence of solutions for nonlinear fractional q-difference integral equations with two fractional orders and nonlocal four-point boundary conditions
    Ahmad, Bashir
    Nieto, Juan J.
    Alsaedi, Ahmed
    Al-Hutami, Hana
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (05): : 2890 - 2909
  • [4] SOME FRACTIONAL Q-INTEGRALS AND Q-DERIVATIVES
    ALSALAM, WA
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1966, 15 : 135 - &
  • [5] q-Fractional Calculus and Equations Preface
    Ismail, Mourad
    [J]. Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : IX - +
  • [6] UNIQUENESS OF SOLUTIONS FOR AN INTEGRAL BOUNDARY VALUE PROBLEM WITH FRACTIONAL Q-DIFFERENCES
    Cui, Yaqiong
    Kang, Shugui
    Chen, Huiqin
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (02): : 524 - 531
  • [7] ETEMAD S, 2019, MATHEMATICS, V7, P1
  • [8] Positive solutions for a class of boundary value problems with fractional q-differences
    Ferreira, Rui A. C.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (02) : 367 - 373
  • [9] Gaulue L., 2014, REV TECNO CIENTFICA, V6, P77
  • [10] Jackson F.H., 1910, PURE APPL MATH Q, V41, P193, DOI DOI 10.1017/S0080456800002751