Sharp conditions for the existence of sign-changing solutions to equations involving the one-dimensional p-Laplacian

被引:22
作者
Naito, Yuki [1 ]
Tanaka, Satoshi [2 ]
机构
[1] Kobe Univ, Dept Appl Math, Grad Sch Engn, Nada Ku, Kobe, Hyogo 6578501, Japan
[2] Okayama Univ Sci, Dept Appl Math, Fac Sci, Okayama 7000005, Japan
关键词
Two-point boundary value problems; One-dimensional p-Laplacian; Half-linear differential equations; Shooting method;
D O I
10.1016/j.na.2007.09.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the boundary value problem involving the one-dimensional p-Laplacian (vertical bar u'vertical bar(p-2)u')' + a(x) f (u) = 0. o < x <1. u(0) = u(1) = 0. where p > 1. We establish sharp conditions for the existence of solutions with prescribed numbers of zeros in terms of the ratio f (s)/s(p-1) at infinity and zero. Our argument is based on the shooting method together with the qualitative theory for half-linear differential equations. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3070 / 3083
页数:14
相关论文
共 26 条
[1]   Eigenvalues and the one-dimensional p-Laplacian [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) :383-400
[2]  
[Anonymous], 2005, N HOLLAND MATH STUDI
[3]   A HOMOTOPIC DEFORMATION ALONG P OF A LERAY-SCHAUDER DEGREE RESULT AND EXISTENCE FOR (/U'/P-2U')'+F(T,U)=O, U(O)=U(T)=O, P-GREATER-THAN-1 [J].
DELPINO, M ;
ELGUETA, M ;
MANASEVICH, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 80 (01) :1-13
[4]  
Dosly O., 2004, Half-linear differential equations, DOI [10.1016/s1874-5725(00)80005-x, DOI 10.1016/S1874-5725(00)80005-X]
[5]  
Elbert A., 1981, C MATH SOC JANOS BOL, V30, P153
[6]   Multiplicity of solutions for a class of nonlinear second-order equations [J].
GarciaHuidobro, M ;
Ubilla, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (09) :1509-1520
[7]  
Hartman P., 1982, Ordinary differential equations, V2
[8]   Twin positive solutions for the one-dimensional p-Laplacian boundary value problems [J].
He, XM ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (07) :975-984
[9]  
Jaros J., 1999, ACTA MATH U COMENIAN, VLXVIII, P137
[10]  
Kajikyia R., 2001, ADV DIFF EQU, V11, P1317