EDGE-WIENER TYPE INVARIANTS OF SPLICES AND LINKS OF GRAPHS

被引:0
|
作者
Azari, Mandieh [1 ]
Ranmanesh, Ali [1 ]
机构
[1] Tarbiat Modares Univ, Fac Math Sci, Dept Pure Math, Tehran, Iran
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2015年 / 77卷 / 03期
关键词
Distance; Edge-Wiener type invariants; Splice; Link; INDEX; SUM; COMPUTATION; VERSION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present explicit formulae for the first and second edge-Wiener type invariants of splices and links of graphs. As a consequence, the first and second edge-Wiener and edge hyper-Wiener indices of these classes of composite graphs will be determined.
引用
收藏
页码:143 / 154
页数:12
相关论文
共 34 条
  • [21] Calculating the edge Wiener and edge Szeged indices of graphs
    Yousefi-Azari, H.
    Khalifeh, M. H.
    Ashrafi, A. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (16) : 4866 - 4870
  • [22] RELATIONSHIP BETWEEN EDGE SZEGED AND EDGE WIENER INDICES OF GRAPHS
    Nadjafi-Arani, Mohammad Javad
    Khodashenas, Hasan
    Ashrafi, Ali Reza
    GLASNIK MATEMATICKI, 2012, 47 (01) : 21 - 29
  • [23] Computation of the edge Wiener indices of the sum of graphs
    Azari, Mahdieh
    Iranmanesh, Ali
    ARS COMBINATORIA, 2011, 100 : 113 - 128
  • [24] On the Wiener Index of Some Edge Deleted Graphs
    Durgi, B. S.
    Ramane, H. S.
    Hampiholi, P. R.
    Mekkalike, S. M.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2016, 11 (02): : 139 - 148
  • [25] Claspers and finite type invariants of links
    Habiro, Kazuo
    GEOMETRY & TOPOLOGY, 2000, 4 : 1 - 83
  • [26] CLUSTERS AND VARIOUS VERSIONS OF WIENER-TYPE INVARIANTS
    Azari, Mahdieh
    Iranmanesh, Ali
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2015, 39 (02): : 155 - 171
  • [27] Greedy Trees, Caterpillars, and Wiener-type Graph Invariants
    Schmuck, Nina S.
    Wagner, Stephan G.
    Wang, Hua
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2012, 68 (01) : 273 - 292
  • [28] Detecting the orientation of string links by finite type invariants
    Duzhin, S. V.
    Karev, M. V.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2007, 41 (03) : 208 - 216
  • [29] Detecting the orientation of string links by finite type invariants
    S. V. Duzhin
    M. V. Karev
    Functional Analysis and Its Applications, 2007, 41 : 208 - 216
  • [30] Finite type link homotopy invariants of k-trivial links
    Hughes, JR
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2003, 12 (03) : 375 - 393