Dietary Effect of Clostridium autoethanogenum Protein on Growth, Intestinal Histology and Flesh Lipid Metabolism of Largemouth Bass (Micropterus salmoides) Based on Metabolomics

被引:14
|
作者
Yang, Pinxian [1 ,2 ,3 ]
Li, Xiaoqin [1 ,2 ,3 ]
Yao, Wenxiang [1 ,2 ,3 ]
Li, Menglu [1 ,2 ,3 ]
Wang, Yuanyuan [1 ,2 ,3 ]
Leng, Xiangjun [1 ,2 ,3 ]
机构
[1] Shanghai Ocean Univ, Natl Demonstrat Ctr Expt Fisheries Sci Educ, Shanghai 201306, Peoples R China
[2] Shanghai Ocean Univ, Ctr Res Environm Ecol & Fish Nutr CREEFN, Minist Agr & Rural Affairs, Shanghai 201306, Peoples R China
[3] Shanghai Ocean Univ, Shanghai Collaborat Innovat Aquat Anim Genet & Bre, Shanghai 201306, Peoples R China
关键词
Clostridium autoethanogenum; largemouth bass; growth; intestinal healthy; lipid metabolomics; FISH-MEAL; ATLANTIC SALMON; SOY PROTEIN; NUTRIENT UTILIZATION; NATURAL-GAS; PERFORMANCE; SALAR; REPLACEMENT; ARGININE; TAURINE;
D O I
10.3390/metabo12111088
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Clostridium autoethanogenum protein (CAP) is a new single-cell protein explored in aquatic feeds in recent years. This study investigated the dietary effects of CAP replacing fishmeal (FM) on the growth, intestinal histology and flesh metabolism of largemouth bass (Micropterus salmoides). In a basal diet containing 700 g/kg of FM, CAP was used to substitute 0%, 15%, 30%, 45%, 70% and 100% of dietary FM to form six isonitrogenous diets (Con, CAP-15, CAP-30, CAP-45, CAP-70, CAP-100) to feed largemouth bass (80.0 g) for 12 weeks. Only the CAP-100 group showed significantly lower weight gain (WG) and a higher feed conversion ratio (FCR) than the control (p < 0.05). A broken-line analysis based on WG and FCR showed that the suitable replacement of FM with CAP was 67.1-68.0%. The flesh n-3/n-6 polyunsaturated fatty acid, intestinal protease activity, villi width and height in the CAP-100 group were significantly lower than those in the control group (p < 0.05). The Kyoto Encyclopedia of Genes and Genomes analysis showed that the metabolic pathway in flesh was mainly enriched in the "lipid metabolic pathway", "amino acid metabolism", "endocrine system" and "carbohydrate metabolism". In conclusion, CAP could successfully replace 67.1-68.0% of dietary FM, while the complete substitution decreased the growth, damaged the intestinal morphology and down-regulated the lipid metabolites.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Effects of Fermented Soybean Meal Substituting Plant Protein and Fish Meal on Growth, Flesh Quality, and Intestinal Microbiota of Largemouth Bass (Micropterus salmoides)
    Guo, Beibei
    Huang, Lingling
    Li, Xiaoqin
    Chen, Yunfeng
    Huang, Tianyu
    Ma, Lizhou
    Leng, Xiangjun
    AQUACULTURE NUTRITION, 2023, 2023
  • [42] Dietary resistant starch supplementation improves the fish growth, lipid metabolism and intestinal barrier in largemouth bass (Micropterus salmoides) fed high-fat diets
    Zhang, Xindang
    Jiang, Aixia
    An, Shuxia
    Guo, Chongchong
    You, Fu
    Huang, Zhenyi
    Feng, Shikun
    Zhang, Yanmin
    Chang, Xulu
    Yang, Guokun
    Meng, Xiaolin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 306
  • [43] Growth and body composition of juvenile largemouth bass Micropterus salmoides in response to dietary protein and energy levels
    Portz, L
    Cyrino, JEP
    Martino, RC
    AQUACULTURE NUTRITION, 2001, 7 (04) : 247 - 254
  • [44] Dietary supplementation of mulberry leaf oligosaccharides improves the growth, glucose and lipid metabolism, immunity, and virus resistance in largemouth bass (Micropterus salmoides)
    Zhou, Donglai
    Zhong, Wenhao
    Fu, Bing
    Li, Erna
    Hao, Le
    Li, Qingrong
    Yang, Qiong
    Zou, Yuxiao
    Liu, Zhenxing
    Wang, Fubao
    Liao, Sentai
    Xing, Dongxu
    FRONTIERS IN IMMUNOLOGY, 2025, 16
  • [45] Dietary valine affects growth performance, intestinal immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides)
    Zhao, Fangyue
    Xu, Pao
    Xu, Gangchun
    Huang, Dongyu
    Zhang, Lu
    Ren, Mingchun
    Liang, Hualiang
    ANIMAL FEED SCIENCE AND TECHNOLOGY, 2023, 295
  • [46] Effects of dietary salidroside on intestinal health, immune parameters and intestinal microbiota in largemouth bass ( Micropterus salmoides )
    Wei, Baocan
    Li, Huang
    Han, Tao
    Luo, Qiulan
    Yang, Min
    Qin, Qiwei
    Chen, Yifang
    Wei, Shina
    FISH & SHELLFISH IMMUNOLOGY, 2024, 151
  • [47] Comparison of Lysophospholipids and Bile Acids on the Growth Performance, Lipid Deposition, and Intestinal Health of Largemouth Bass (Micropterus salmoides)
    Bao, Ming-Yang
    Wang, Zhe
    Nuez-Ortin, Waldo G.
    Zhao, Guiping
    Dehasque, Marleen
    Du, Zhen-Yu
    Zhang, Mei-Ling
    AQUACULTURE NUTRITION, 2024, 2024
  • [48] Effects of Virgin Microplastics on Growth, Intestinal Morphology and Microbiota on Largemouth Bass (Micropterus salmoides)
    Zhang, Chaonan
    Wang, Qiujie
    Wang, Shaodan
    Pan, Zhengkun
    Sun, Di
    Cheng, Yanbo
    Zou, Jixing
    Xu, Guohuan
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [49] Effect of dietary iron (Fe) level on growth performance and health status of largemouth bass (Micropterus salmoides)
    Mao, Xiangjie
    Chen, Wangwang
    Long, Xianmei
    Pan, Xiaomei
    Liu, Guoqing
    Hu, Wenguang
    Gu, Dianchao
    Tan, Qingsong
    AQUACULTURE, 2024, 581
  • [50] Effect of Dietary Copper on Growth Performance, Antioxidant Capacity, and Immunity in Juvenile Largemouth Bass (Micropterus salmoides)
    Kayiira, John Cosmas
    Mi, Haifeng
    Liang, Hualiang
    Ren, Mingchun
    Huang, Dongyu
    Zhang, Lu
    Teng, Tao
    FISHES, 2024, 9 (09)