D_dNet-65 R-CNN: Object Detection Model Fusing Deep Dilated Convolutions and Light-Weight Networks

被引:4
作者
Quan, Yu [1 ]
Li, Zhixin [1 ]
Zhang, Fengqi [1 ]
Zhang, Canlong [1 ]
机构
[1] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min & Secur, Guilin 541004, Peoples R China
来源
PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III | 2019年 / 11672卷
基金
中国国家自然科学基金;
关键词
Object detection; Deep dilated convolution network; Light-weight network; Transfer learning; Convolutional neural network;
D O I
10.1007/978-3-030-29894-4_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, object detection has become a popular direction of computer vision and digital image processing. All the research work in this paper is a two-stage object detection algorithm based on deep learning. First, this paper proposes the Deep Dilated Convolution Network (D_dNet). That is, by adding the operation of dilated convolution into the backbone network, in this way, not only the number of training parameters can be further reduced, but also the resolution of feature map and the size of receptive field can be improved. Second, the Fully Convolutional Layer (FC) is usually involved in the re-identification process of region proposal in the traditional object detection. This too "thick" network structure will easily lead to reduced detection speed and excessive computation. Therefore, the feature map before training is compressed in this paper to establish a light-weight network. Then, transfer learning method is introduced in training network to optimize the model. The whole experiment is evaluated based on MSCOCO dataset. Experiments show that the accuracy of the proposed model is improved by 1.3 to 2.2% points.
引用
收藏
页码:16 / 28
页数:13
相关论文
共 20 条
[1]   Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering [J].
Anderson, Peter ;
He, Xiaodong ;
Buehler, Chris ;
Teney, Damien ;
Johnson, Mark ;
Gould, Stephen ;
Zhang, Lei .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6077-6086
[2]  
[Anonymous], 2015, MICROSOFT COCO CAPTI
[3]  
Dai JF, 2016, ADV NEUR IN, V29
[4]   Scalable Object Detection using Deep Neural Networks [J].
Erhan, Dumitru ;
Szegedy, Christian ;
Toshev, Alexander ;
Anguelov, Dragomir .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2155-2162
[5]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[6]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]  
Jiang WH, 2018, AAAI CONF ARTIF INTE, P6959
[9]   Focal Loss for Dense Object Detection [J].
Lin, Tsung-Yi ;
Goyal, Priya ;
Girshick, Ross ;
He, Kaiming ;
Dollar, Piotr .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2999-3007
[10]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944