Flat connections in open string mirror symmetry

被引:9
|
作者
Alim, Murad [1 ]
Hecht, Michael [2 ]
Jockers, Hans [3 ]
Mayr, Peter [2 ]
Mertens, Adrian [2 ]
Soroush, Masoud [3 ]
机构
[1] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
[2] LMU, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[3] Univ Bonn, Inst Phys, Bethe Ctr Theoret Phys, D-53115 Bonn, Germany
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2012年 / 06期
基金
美国国家科学基金会;
关键词
Topological Strings; Differential and Algebraic Geometry; CALABI-YAU MANIFOLDS; F-THEORY; SUPERPOTENTIALS; INVARIANTS; TERMS; EQUATIONS; PERIODS;
D O I
10.1007/JHEP06(2012)138
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a flat connection defined on the open-closed deformation space of open string mirror symmetry for type II compactifications on Calabi-Yau threefolds with D-branes. We use flatness and integrability conditions to define distinguished flat coordinates and the superpotential function at an arbitrary point in the open-closed deformation space. Integrability conditions are given for concrete deformation spaces with several closed and open string deformations. We study explicit examples for expansions around different limit points, including orbifold Gromov-Witten invariants, and brane configurations with several brane moduli. In particular, the latter case covers stacks of parallel branes with non-Abelian symmetry.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] Quantum mirror symmetry and twistors
    Alexandrov, Sergei
    Saueressig, Frank
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (09):
  • [22] Mirror symmetry and line operators
    Dimofte, Tudor
    Garner, Niklas
    Geracie, Michael
    Hilburn, Justin
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [23] Torus Knots and Mirror Symmetry
    Brini, Andrea
    Eynard, Bertrand
    Marino, Marcos
    ANNALES HENRI POINCARE, 2012, 13 (08): : 1873 - 1910
  • [24] Scattering diagrams in mirror symmetry
    Fantini, Veronica
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2024, 17 (02): : 313 - 332
  • [25] Quantization via mirror symmetry
    Gukov, Sergei
    JAPANESE JOURNAL OF MATHEMATICS, 2011, 6 (02): : 65 - 119
  • [26] Mirror symmetry and line operators
    Tudor Dimofte
    Niklas Garner
    Michael Geracie
    Justin Hilburn
    Journal of High Energy Physics, 2020
  • [27] Involutions, obstructions and mirror symmetry
    Solomon, Jake P.
    ADVANCES IN MATHEMATICS, 2020, 367
  • [28] Hints for off-shell mirror symmetry in type II/F-theory compactifications
    Alim, M.
    Hecht, M.
    Jockers, H.
    Mayr, P.
    Mertens, A.
    Soroush, M.
    NUCLEAR PHYSICS B, 2010, 841 (03) : 303 - 338
  • [29] Open orbifold Gromov-Witten invariants of [C3/Zn]: localization and mirror symmetry
    Brini, Andrea
    Cavalieri, Renzo
    SELECTA MATHEMATICA-NEW SERIES, 2011, 17 (04): : 879 - 933
  • [30] Twin Lagrangian fibrations in mirror symmetry
    Leung, Naichung Conan
    Li, Yin
    JOURNAL OF SYMPLECTIC GEOMETRY, 2019, 17 (05) : 1331 - 1387